Tangent conics at quartic surfaces and conics in quartic double solids

被引:0
|
作者
Hadan, I [1 ]
机构
[1] Humboldt Univ, Inst Reine Math, D-10099 Berlin, Germany
关键词
double solids; monodromy; root systems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a quartic double solid Z phi under right arrow P-3 we study the parameter space of conics (i.e. of smooth rational curves C subset of Z such that C.phi*O-P3(1) = 2) This parameter space is naturally fibred (with disconnected fibres) over P-3. We study the monodromy of the fibres and determine this way the irreducible components of the parameter space.
引用
收藏
页码:127 / 162
页数:36
相关论文
共 50 条
  • [21] Quartic double solids with ordinary singularities
    M. I. Grooten
    J. H. M. Steenbrink
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 : 104 - 112
  • [22] TORELLI THEOREM FOR QUARTIC DOUBLE SOLIDS
    DEBARRE, O
    COMPOSITIO MATHEMATICA, 1990, 73 (02) : 161 - 187
  • [23] Quartic double solids with ordinary singularities
    Grooten, M. I.
    Steenbrink, J. H. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 (01) : 104 - 112
  • [24] WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL?
    Cheltsov, Ivan
    Przyjalkowski, Victor
    Shramov, Constantin
    JOURNAL OF ALGEBRAIC GEOMETRY, 2019, 28 (02) : 201 - 243
  • [25] Limits of Pluri-Tangent Planes to Quartic Surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    ALGEBRAIC AND COMPLEX GEOMETRY, 2014, 71 : 123 - 199
  • [26] REAL CIRCLES TANGENT TO 3 CONICS
    Breiding, P.
    Lindberg, J.
    Ong, W. J. G.
    Sommer, L.
    MATEMATICHE, 2023, 78 (01): : 149 - 175
  • [27] Another description of certain quartic double solids
    Kreussler, B
    MATHEMATISCHE NACHRICHTEN, 2000, 212 : 91 - 100
  • [28] Non-factorial quartic double solids
    Hong, Kyusik
    ADVANCES IN GEOMETRY, 2014, 14 (01) : 161 - 174
  • [29] Gromov Elliptic Resolutions of Quartic Double Solids
    Ciliberto, Ciro
    Zaidenberg, Mikhail
    TAIWANESE JOURNAL OF MATHEMATICS, 2025,
  • [30] ON THE SINGULARITIES OF SURFACES RULED BY CONICS
    Brundu, Michela
    Sacchiero, Gianni
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) : 1857 - 1879