Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes

被引:23
|
作者
Chmeliov, Jevgenij [1 ]
Narkeliunas, Jonas [1 ]
Graham, Matt W. [2 ]
Fleming, Graham R. [3 ]
Valkunas, Leonas [1 ,4 ]
机构
[1] Vilnius Univ, Dept Theoret Phys, Fac Phys, LT-10222 Vilnius, Lithuania
[2] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Ctr Phys Sci & Technol, Inst Phys, LT-01108 Vilnius, Lithuania
关键词
DYNAMICS; SPECTROSCOPY; PHONONS;
D O I
10.1039/c5nr06853c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a thorough analysis of one- and two-color transient absorption measurements performed on single-and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation-the coherent and the diffusion-limited ones-we are able to simultaneously reproduce excitation kinetics following both E-11 and E-22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E-11 state bypassing the intermediate E-22 manifold, so that after excitation resonant with the E-11 transition, the E-22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E-22 manifold, comparing to those probed at the E-11 band, is also provided.
引用
收藏
页码:1618 / 1626
页数:9
相关论文
共 50 条
  • [31] EXCITON-EXCITON ANNIHILATION AND EXCITON KINETICS IN POLY(DI-N-HEXYLSILANE)
    KEPLER, RG
    SOOS, ZG
    PHYSICAL REVIEW B, 1993, 47 (15): : 9253 - 9262
  • [32] Exciton-Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter
    Hasan, Monirul
    Shukla, Atul
    Ahmad, Viqar
    Sobus, Jan
    Bencheikh, Fatima
    McGregor, Sarah K. M.
    Mamada, Masashi
    Adachi, Chihaya
    Lo, Shih-Chun
    Namdas, Ebinazar B.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
  • [33] Observation of Rapid Exciton-Exciton Annihilation in Monolayer Molybdenum Disulfide
    Sun, Dezheng
    Rao, Yi
    Reider, Georg A.
    Chen, Gugang
    You, Yumeng
    Brezin, Louis
    Harutyunyan, Avetik R.
    Heinz, Tony F.
    NANO LETTERS, 2014, 14 (10) : 5625 - 5629
  • [34] Harnessing Exciton-Exciton Annihilation in Two-Dimensional Semiconductors
    Linardy, Eric
    Yadav, Dinesh
    Vella, Daniele
    Verzhbitskiy, Ivan A.
    Watanabe, Kenji
    Taniguchi, Takashi
    Pauly, Fabian
    Trushin, Maxim
    Eda, Goki
    NANO LETTERS, 2020, 20 (03) : 1647 - 1653
  • [35] Exciton-exciton annihilation in poly(p-phenylenevinylene) films
    Kepler, RG
    Valencia, VS
    Jacobs, SJ
    McNamara, JJ
    SYNTHETIC METALS, 1996, 78 (03) : 227 - 230
  • [36] TRIPLET EXCITON-EXCITON ANNIHILATION AT HIGH MAGNETIC-FIELDS
    ANDREYEV, VA
    GLUKHOV, VS
    UKRAINSKII FIZICHESKII ZHURNAL, 1986, 31 (04): : 538 - 546
  • [37] Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons
    Soavi, Giancarlo
    Dal Conte, Stefano
    Manzoni, Cristian
    Viola, Daniele
    Narita, Akimitsu
    Hu, Yunbin
    Feng, Xinliang
    Hohenester, Ulrich
    Molinari, Elisa
    Prezzi, Deborah
    Muellen, Klaus
    Cerullo, Giulio
    NATURE COMMUNICATIONS, 2016, 7
  • [38] EXCITON-EXCITON ANNIHILATION AND SATURATION EFFECT IN TBF3
    JOUBERT, MF
    JACQUIER, B
    MONCORGE, R
    PHYSICAL REVIEW B, 1983, 28 (07) : 3725 - 3732
  • [39] Exciton-Exciton Annihilation in Mixed-Phase Polyfluorene Films
    Shaw, Paul E.
    Ruseckas, Arvydas
    Peet, Jeffrey
    Bazan, Guillermo C.
    Samuel, Ifor D. W.
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (01) : 155 - 161
  • [40] Ultrafast intra-excitonic quasiparticle annihilation by exciton-exciton scattering in individually isolated single-walled carbon nanotubes
    Sim, Sangwan
    Choi, Jeongmook
    Lim, Seongchu
    Lee, Young Hee
    Choi, Hyunyong
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,