Assessment of transcript reconstruction methods for RNA-seq

被引:9
|
作者
Steijger, Tamara [1 ]
Abril, Josep F. [2 ]
Engstrom, Par G. [1 ]
Kokocinski, Felix [3 ]
Hubbard, Tim J. [3 ]
Guigo, Roderic [4 ,5 ]
Harrow, Jennifer [3 ]
Bertone, Paul [1 ,6 ,7 ,8 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[2] Univ Barcelona, Fac Biol, Dept Genet, Barcelona, Spain
[3] Wellcome Trust Sanger Inst, Cambridge, England
[4] Ctr Genom Regulat, Barcelona, Spain
[5] Univ Pompeu Fabra, Barcelona, Spain
[6] European Mol Biol Lab, Genome Biol Unit, D-69012 Heidelberg, Germany
[7] European Mol Biol Lab, Dev Biol Unit, D-69012 Heidelberg, Germany
[8] Univ Cambridge, Wellcome Trust Med Res Council Cambridge Stem Cel, Cambridge, England
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME ANNOTATION; ISOFORM DISCOVERY; ACCURATE; QUANTIFICATION; GENERATION; ALIGNMENT;
D O I
10.1038/NMETH.2714
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
引用
收藏
页码:1177 / +
页数:10
相关论文
共 50 条
  • [21] A comparison of sperm RNA-seq methods
    Mao, Shihong
    Sendler, Edward
    Goodrich, Robert J.
    Hauser, Russ
    Krawetz, Stephen A.
    SYSTEMS BIOLOGY IN REPRODUCTIVE MEDICINE, 2014, 60 (05) : 308 - 315
  • [22] RNA-Seq methods for transcriptome analysis
    Hrdlickova, Radmila
    Toloue, Masoud
    Tian, Bin
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2017, 8 (01)
  • [23] Development and evaluation of RNA-seq methods
    Joshua Levin
    Xian Adiconis
    Moran Yassour
    Dawn Thompson
    Mitchell Guttman
    Michael Berger
    Lin Fan
    Nir Friedman
    Chad Nusbaum
    Andreas Gnirke
    Aviv Regev
    Genome Biology, 11 (Suppl 1)
  • [24] A global assessment of RNA-seq performance
    Darren J. Burgess
    Nature Reviews Genetics, 2014, 15 (10) : 645 - 645
  • [25] Differential analysis of gene regulation at transcript resolution with RNA-seq
    Cole Trapnell
    David G Hendrickson
    Martin Sauvageau
    Loyal Goff
    John L Rinn
    Lior Pachter
    Nature Biotechnology, 2013, 31 : 46 - 53
  • [26] Polyester: simulating RNA-seq datasets with differential transcript expression
    Frazee, Alyssa C.
    Jaffe, Andrew E.
    Langmead, Ben
    Leek, Jeffrey T.
    BIOINFORMATICS, 2015, 31 (17) : 2778 - 2784
  • [27] Differential analysis of gene regulation at transcript resolution with RNA-seq
    Trapnell, Cole
    Hendrickson, David G.
    Sauvageau, Martin
    Goff, Loyal
    Rinn, John L.
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2013, 31 (01) : 46 - +
  • [28] RNA-Skim: a rapid method for RNA-Seq quantification at transcript level
    Zhang, Zhaojun
    Wang, Wei
    BIOINFORMATICS, 2014, 30 (12) : 283 - 292
  • [29] RNA-eXpress annotates novel transcript features in RNA-seq data
    Forster, Samuel C.
    Finkel, Alexander M.
    Gould, Jodee A.
    Hertzog, Paul J.
    BIOINFORMATICS, 2013, 29 (06) : 810 - 812
  • [30] An evaluation of RNA-seq differential analysis methods
    Li, Dongmei
    Zand, Martin S.
    Dye, Timothy D.
    Goniewicz, Maciej L.
    Rahman, Irfan
    Xie, Zidian
    PLOS ONE, 2022, 17 (09):