A new 3-stage fourth order Runge-Kutta composite method for solving initial value problems

被引:0
|
作者
Yaacob, N [1 ]
Evans, DJ
机构
[1] Univ Teknol Malaysia, Dept Math, Johor Bahru, Malaysia
[2] Loughborough Univ Technol, Parallel Algorithms & Architectures Res Ctr, Loughborough LE11 3TU, Leics, England
关键词
RK-composite; RK-HeM; RK-HaM; RK-N34; stability; local truncation error;
D O I
10.1080/00207169908804875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a new 3-stage 4th order RK method for solving initial value problems of the form y' = f(y), y(x(0)) = y(0) Together with stability analysis we justify the method of fourth order. The examples given proved that the new method is comparable to many existing methods.
引用
收藏
页码:541 / 546
页数:6
相关论文
共 50 条
  • [21] On a parallel mesh-chopping algorithm for a class of initial value problems using fourth-order explicit Runge-Kutta method
    Katti, CP
    Srivastava, DK
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) : 565 - 570
  • [22] A New Fourth-Order RUNGE-KUTTA Method Based on the Power Mean
    Muda, Yuslenita
    Wartono, Wartono
    Sarah, Holimina
    VISION 2025: EDUCATION EXCELLENCE AND MANAGEMENT OF INNOVATIONS THROUGH SUSTAINABLE ECONOMIC COMPETITIVE ADVANTAGE, 2019, : 5640 - 5648
  • [23] Variable Order/Step Integration by 3-stage Diagonally Implicit Runge-Kutta Method for Electromagnetic Transient Simulations
    Ye X.
    Tang Y.
    Song Q.
    Liu W.
    Lü G.
    Lu Y.
    Dianwang Jishu/Power System Technology, 2020, 44 (11): : 4047 - 4054
  • [24] Runge-Kutta methods without order reduction for linear initial boundary value problems
    Alonso-Mallo, I
    NUMERISCHE MATHEMATIK, 2002, 91 (04) : 577 - 603
  • [25] RUNGE-KUTTA PAIRS FOR PERIODIC INITIAL-VALUE PROBLEMS
    PAPAGEORGIOU, G
    TSITOURAS, C
    PAPAKOSTAS, SN
    COMPUTING, 1993, 51 (02) : 151 - 163
  • [26] Runge-Kutta pairs for scalar autonomous initial value problems
    Papageorgiou, G
    Tsitouras, C
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (02) : 201 - 209
  • [27] SPATIAL MANIFESTATIONS OF ORDER REDUCTION IN RUNGE-KUTTA METHODS FOR INITIAL BOUNDARY VALUE PROBLEMS
    Rosales, Rodolfo Ruben
    Seibold, Benjamin
    Shirokoff, David
    Zhou, Dong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) : 613 - 653
  • [28] Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems
    Calvo, MP
    Palencia, C
    MATHEMATICS OF COMPUTATION, 2002, 71 (240) : 1529 - 1543
  • [29] Runge-Kutta methods without order reduction for linear initial boundary value problems
    Isaías Alonso-Mallo
    Numerische Mathematik, 2002, 91 : 577 - 603
  • [30] An Efficient Third-Order Scheme Based on Runge-Kutta and Taylor Series Expansion for Solving Initial Value Problems
    Abdul-Hassan, Noori Y.
    Kadum, Zainab J.
    Ali, Ali Hasan
    ALGORITHMS, 2024, 17 (03)