Signatures of magnetospheric injections in Saturn's aurora

被引:26
|
作者
Radioti, A. [1 ]
Roussos, E. [2 ]
Grodent, D. [1 ]
Gerard, J. -C. [1 ]
Krupp, N. [2 ]
Mitchell, D. G. [3 ]
Gustin, J. [1 ]
Bonfond, B. [1 ,4 ]
Pryor, W. [5 ]
机构
[1] Univ Liege, Inst Astrophys & Geophys, Lab Phys Atmospher & Planetaire, B-4000 Liege, Belgium
[2] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany
[3] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[4] Southwest Res Inst, Dept Space Studies, Boulder, CO USA
[5] Cent Arizona Coll, Dept Sci, Coolidge, AZ USA
关键词
aurora; magnetospheric injections; magnetosphere-ionosphere coupling; pitch angle diffusion and electron scattering; RECONNECTION; ELECTRONS; JUPITER; MOTION; CUSP;
D O I
10.1002/jgra.50161
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on the evolution of auroral structures based on two 3h sequences of Saturn's northern hemisphere obtained with the UVIS instrument on board Cassini, and we discuss their possible association with injections in the magnetosphere of Saturn. Simultaneously with the UV auroral structures, we observe Energetic Neutral Atom (ENA) enhancements which are indicative of a rotating heated plasma region possibly related to magnetospheric injections. We examine the possibility that the UV auroral structures reported here are triggered by energetic particle injections by investigating (a) the evolution of the longitudinal extent of an injection and (b) its energy density, properties that change with time due to dispersion and ion/electron losses. We simulate the auroral counterpart of an injection considering that the precipitating energy flux could be provided to the ionosphere by pitch angle diffusion and electron scattering by whistler-mode waves. We compare the brightness and size evolution of the simulated ionospheric signature with the observed values, and we demonstrate that the UV auroral structure behaves as an auroral signature of an injection. This comparative study defines characteristics of the injections such as the spectral index and the electron energy range as well as the magnetospheric corotation rate. Additionally, based on the simultaneous ENA-UV emissions, we discuss the possibility that pitch angle diffusion and electron scattering may not be the only mechanism responsible for the observed auroral emissions. Field-aligned currents driven by the pressure gradients along the boundaries of the injected hot plasma cloud could be also considered to play a role on how injections create auroral emissions at Saturn.
引用
收藏
页码:1922 / 1933
页数:12
相关论文
共 50 条
  • [41] Definition of Saturn's magnetospheric model parameters for the Pioneer 11 flyby
    Belenkaya, E. S.
    Alexeev, I. I.
    Kalegaev, V. V.
    Blokhina, M. S.
    ANNALES GEOPHYSICAE, 2006, 24 (03) : 1145 - 1156
  • [42] Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation
    Jia, Xianzhe
    Hansen, Kenneth C.
    Gombosi, Tamas I.
    Kivelson, Margaret G.
    Toth, Gabor
    DeZeeuw, Darren L.
    Ridley, Aaron J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [43] Energetic Particle Signatures Above Saturn's Aurorae
    Bader, A.
    Badman, S. V.
    Ray, L. C.
    Paranicas, C. P.
    Lorch, C. T. S.
    Clark, G.
    Andre, M.
    Mitchell, D. G.
    Constable, D. A.
    Kinrade, J.
    Hunt, G. J.
    Pryor, W.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (01)
  • [44] The Formation of Saturn's and Jupiter's Electron Radiation Belts by Magnetospheric Electric Fields
    Hao, Yi-Xin
    Sun, Yi-Xin
    Roussos, Elias
    Liu, Ying
    Kollmann, Peter
    Yuan, Chong-Jing
    Krupp, Norbert
    Paranicas, Chris
    Zhou, Xu-Zhi
    Murakami, Go
    Kita, Hajime
    Zong, Qiu-Gang
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 905 (01)
  • [45] How Jupiter's unusual magnetospheric topology structures its aurora
    Zhang, Binzheng
    Delamere, Peter A.
    Yao, Zhonghua
    Bonfond, Bertrand
    Lin, D.
    Sorathia, Kareem A.
    Brambles, Oliver J.
    Lotko, William
    Garretson, Jeff S.
    Merkin, Viacheslav G.
    Grodent, Denis
    Dunn, William R.
    Lyon, John G.
    SCIENCE ADVANCES, 2021, 7 (15)
  • [46] Interplanetary magnetic field control of Saturn's polar cusp aurora
    Bunce, EJ
    Cowley, SWH
    Milan, SE
    ANNALES GEOPHYSICAE, 2005, 23 (04) : 1405 - 1431
  • [47] Pulsations of the polar cusp aurora at Saturn
    Palmaerts, B.
    Radioti, A.
    Roussos, E.
    Grodent, D.
    Gerard, J. -C.
    Krupp, N.
    Mitchell, D. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (12) : 11952 - 11963
  • [48] Peak emission altitude of Saturn's H3+ aurora
    Stallard, Tom S.
    Melin, Henrik
    Miller, Steve
    Badman, Sarah V.
    Brown, Robert H.
    Baines, Kevin H.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [49] Inflow Speed Analysis of Interchange Injections in Saturn's Magnetosphere
    Paranicas, C.
    Thomsen, M. F.
    Kollmann, P.
    Azari, A. R.
    Bader, A.
    Badman, S. V.
    Dumont, M.
    Kinrade, J.
    Krupp, N.
    Roussos, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
  • [50] An isolated, bright cusp aurora at Saturn
    Kinrade, J.
    Badman, S. V.
    Bunce, E. J.
    Tao, C.
    Provan, G.
    Cowley, S. W. H.
    Grocott, A.
    Gray, R. L.
    Grodent, D.
    Kimura, T.
    Nichols, J. D.
    Arridge, C. S.
    Radioti, A.
    Clarke, J. T.
    Crary, F. J.
    Pryor, W. R.
    Melin, H.
    Baines, K. H.
    Dougherty, M. K.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (06) : 6121 - 6138