Supervised cross-modal factor analysis for multiple modal data classification

被引:13
|
作者
Wang, Jingbin [1 ,2 ]
Zhou, Yihua [3 ]
Duan, Kanghong [4 ]
Wang, Jim Jing-Yan [5 ]
Bensmail, Halima [6 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
[3] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[4] State Ocean Adm, North China Sea Marine Tech Support Ctr, Qingdao 266033, Peoples R China
[5] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
[6] Qatar Comp Res Inst, Doha 5825, Qatar
关键词
Multiple modal learning; Cross-modal factor analysis; Supervised learning; SPARSE REPRESENTATION; TEXT CLASSIFICATION; SURFACE; ACTIVATION; NETWORK;
D O I
10.1109/SMC.2015.329
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods.
引用
收藏
页码:1882 / 1888
页数:7
相关论文
共 50 条
  • [41] Semi-supervised Deep Quantization for Cross-modal Search
    Wang, Xin
    Zhu, Wenwu
    Liu, Chenghao
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1730 - 1739
  • [42] Discriminative deep asymmetric supervised hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Liu, Ziyi
    Xiang, Lun
    Meng, Xiaojing
    KNOWLEDGE-BASED SYSTEMS, 2020, 204
  • [43] Semi-Supervised Knowledge Distillation for Cross-Modal Hashing
    Su, Mingyue
    Gu, Guanghua
    Ren, Xianlong
    Fu, Hao
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 662 - 675
  • [44] Deep supervised multimodal semantic autoencoder for cross-modal retrieval
    Tian, Yu
    Yang, Wenjing
    Liu, Qingsong
    Yang, Qiong
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [45] Self-supervised incomplete cross-modal hashing retrieval
    Peng, Shouyong
    Yao, Tao
    Li, Ying
    Wang, Gang
    Wang, Lili
    Yan, Zhiming
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [46] Supervised Discrete Matrix Factorization Hashing For Cross-Modal Retrieval
    Wu, Fei
    Wu, Zhiyong
    Feng, Yujian
    Zhou, Jun
    Huang, He
    Li, Xinwei
    Dong, Xiwei
    Jing, Xiao Yuan
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 855 - 859
  • [47] Semi-Supervised Cross-Modal Retrieval With Label Prediction
    Mandal, Devraj
    Rao, Pramod
    Biswas, Soma
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (09) : 2345 - 2353
  • [48] Discriminative deep asymmetric supervised hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Liu, Ziyi
    Xiang, Lun
    Meng, Xiaojing
    Knowledge-Based Systems, 2022, 204
  • [49] Ranking-Based Supervised Discrete Cross-Modal Hashing
    Li H.-Q.
    Wang Y.-X.
    Chen Z.-D.
    Luo X.
    Xu X.-S.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (08): : 1620 - 1635
  • [50] Cross-modal plasticity
    不详
    TRENDS IN COGNITIVE SCIENCES, 1997, 1 (07) : 251 - 251