Maximal regularity for stochastic convolutions driven by L,vy processes

被引:49
|
作者
Brzezniak, Zdzislaw [1 ]
Hausenblas, Erika [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
Stochastic convolution; Time homogeneous Poisson random measure and maximal regularity; Martingale type p Banach spaces; EVOLUTION EQUATIONS; MARTINGALES; SPACES;
D O I
10.1007/s00440-008-0181-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25-29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.
引用
收藏
页码:615 / 637
页数:23
相关论文
共 50 条