Numerical simulation of shock wave propagation in microchannels using continuum and kinetic approaches

被引:29
|
作者
Zeitoun, David E. [1 ]
Burtschell, Yves [1 ]
Graur, Irina A. [1 ]
Ivanov, Mikhail S. [2 ]
Kudryavtsev, Alexey N. [2 ]
Bondar, Yevgeny A. [2 ]
机构
[1] Univ Aix Marseille 1, UMR 6595, IUSTI, Ecole Polytech Univ Marseille,DME, F-13453 Marseille, France
[2] Russian Acad Sci, Siberian Div, Inst Theoret & Appl Mech, Novosibirsk 630090, Russia
关键词
Micro-shock tube; Viscous effects; Kinetic equations; FLOW;
D O I
10.1007/s00193-009-0202-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical simulations of shock wave propagation in microchannels and microtubes (viscous shock tube problem) have been performed using three different approaches: the Navier-Stokes equations with the velocity slip and temperature jump boundary conditions, the statistical Direct Simulation Monte Carlo method for the Boltzmann equation, and the model kinetic Bhatnagar-Gross-Krook equation with the Shakhov equilibrium distribution function. Effects of flow rarefaction and dissipation are investigated and the results obtained with different approaches are compared. A parametric study of the problem for different Knudsen numbers and initial shock strengths is carried out using the Navier-Stokes computations.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 50 条
  • [31] Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
    Song Hai-Feng
    Liu Hai-Feng
    Zhang Guang-Cai
    Zhao Yan-Hong
    CHINESE PHYSICS LETTERS, 2009, 26 (06)
  • [32] Numerical simulation of gas flow in rough microchannels: hybrid kinetic-continuum approach versus Navier-Stokes
    Rovenskaya, O. I.
    Croce, G.
    MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (05)
  • [33] Numerical simulation of wave propagation using spectral finite elements
    Hennings B.
    Lammering R.
    Gabbert U.
    CEAS Aeronautical Journal, 2013, 4 (1) : 3 - 10
  • [34] Numerical investigations of shock wave propagation in polymethylmethacrylate
    Popova, T. V.
    Mayer, A. E.
    Khishchenko, K. V.
    XXX INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2015), 2015, 653
  • [35] Numerical simulation of shock wave propagation over a dense particle layer using the Baer-Nunziato model
    Utkin, P.
    Chuprov, P.
    PHYSICS OF FLUIDS, 2023, 35 (11)
  • [36] Entropy Principle and Shock-Wave Propagation in Continuum Physics
    Cimmelli, Vito Antonio
    MATHEMATICS, 2023, 11 (01)
  • [37] Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity
    Zhou Aitao
    Wang Kai
    Wang Li
    Du Feng
    Li Zhilei
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2015, 25 (01) : 106 - 111
  • [38] Research on the numerical simulation of dynamic explosion shock wave propagation characteristics between floors
    Wu, Ke
    Chen, Bo
    Li, Hao
    Zhang, Yunfeng
    Zhang, Damin
    Wu, Yixuan
    Sui, Yaguang
    AIP ADVANCES, 2025, 15 (01)
  • [39] Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation
    Dagrau, Franck
    Renier, Mathieu
    Marchiano, Regis
    Coulouvrat, Francois
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 130 (01): : 20 - 32
  • [40] Numerical Simulation of Shock Wave Propagation on Compressible Open-cell Aluminum Foams
    Wang, Zhi-Hua
    Zhang, Yi-Fen
    Song, Wei-Dong
    Zhao, Long-Mao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 : 253 - 257