Goldstone modes in Lyapunov spectra of hard sphere systems

被引:0
|
作者
de Wijn, AS [1 ]
van Beijeren, H [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 01期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the study of chaotic behavior, Lyapunov exponents play an important part. In this paper, we demonstrate how the Lyapunov exponents close to zero of a system of many hard spheres can be described as Goldstone modes, by using a Boltzmann type of approach. At low densities, the correct form is found for the wave number dependence of the exponents as well as for the corresponding eigenvectors in tangent space. The predicted values for the Lyapunov exponents belonging to the transverse mode are within a few percent of the values found in recent simulations, the propagation velocity for the longitudinal mode is within 1%, but the value for the Lyapunov exponent belonging to the longitudinal mode deviates from the simulations by 30%. For higher densities, the predicted values deviate more from the values calculated in the simulations. These deviations may be due to contributions from ring collisions and similar terms, which, even at low densities, can contribute to the leading order.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] SINGULARITIES INDUCED BY GOLDSTONE MODES
    WALLACE, DJ
    ZIA, RKP
    PHYSICAL REVIEW B, 1975, 12 (11): : 5340 - 5342
  • [42] Spontaneous symmetry breaking and Nambu-Goldstone modes in dissipative systems
    Minami, Yuki
    Hidaka, Yoshimasa
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [43] New universality of Lyapunov spectra in Hamiltonian systems
    Yamaguchi, YY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : 195 - 207
  • [44] Analyzing Lyapunov spectra of chaotic dynamical systems
    Diakonos, FK
    Pingel, D
    Schmelcher, P
    PHYSICAL REVIEW E, 2000, 62 (03): : 4413 - 4416
  • [45] Lyapunov Spectra of Coulombic and Gravitational Periodic Systems
    Kumar, Pankaj
    Miller, Bruce N.
    ENTROPY, 2017, 19 (05)
  • [46] GOLDSTONE MODES ON WILSON SURFACE
    OGILVIE, MC
    PHYSICS LETTERS B, 1981, 100 (02) : 163 - 165
  • [47] Lyapunov mode dynamics in hard-disk systems
    Robinson, D. J.
    Morriss, G. P.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (01) : 1 - 31
  • [48] Lyapunov Mode Dynamics in Hard-Disk Systems
    D. J. Robinson
    G. P. Morriss
    Journal of Statistical Physics, 2008, 131 : 1 - 31
  • [49] A VARIATIONAL PRINCIPLE FOR EQUILIBRIUM OF HARD SPHERE SYSTEMS
    GALLAVOTTI, G
    MIRACLES.S
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1968, 8 (03): : 287 - +
  • [50] Structure and rheology of hard-sphere systems
    Clarke, S.M.
    Melrose, J.
    Rennie, A.R.
    Ottewill, R.H.
    Heyes, D.
    Mitchell, P.J.
    Hanley, H.J.M.
    Straty, G.C.
    Journal of Physics Condensed Matter, 1994, 6 (23 A)