A reaction-diffusion SIS epidemic model in an almost periodic environment

被引:21
|
作者
Wang, Bin-Guo [1 ]
Li, Wan-Tong [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
关键词
Reaction-diffusion; Almost periodicity; Epidemic model; Basic reproduction ratio; Threshold dynamics; ASYMPTOTIC PROFILES; STEADY-STATES; SPATIAL SPREAD; DYNAMICS; THRESHOLD; DISEASES; RABIES; RATES;
D O I
10.1007/s00033-015-0585-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A susceptible-infected-susceptible almost periodic reaction-diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio . Particularly, the asymptotic behaviors of with respect to the diffusion rate of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of . Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.
引用
收藏
页码:3085 / 3108
页数:24
相关论文
共 50 条
  • [21] Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment
    Wang, Jinliang
    Xie, Fanglin
    Kuniya, Toshikazu
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 80
  • [22] Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period
    Zhang, Liang
    Wang, Zhi-Cheng
    Zhao, Xiao-Qiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) : 3011 - 3036
  • [23] Spatial dynamics of a reaction-diffusion SIS epidemic model with mass-action-type nonlinearity
    Wang, Renhu
    Wang, Xuezhong
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (04)
  • [24] Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment
    Zhao, Lin
    Wang, Zhi-Cheng
    Zhang, Liang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [25] An SIS reaction-diffusion model with spatial/behavioral heterogeneity
    Li, Lele
    Xiao, Yanni
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [26] Spatial diffusion and periodic evolving of domain in an SIS epidemic model
    Tong, Yachun
    Lin, Zhigui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61 (61)
  • [27] Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement
    Peng, Rui
    Yi, Fengqi
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 259 : 8 - 25
  • [28] Dynamics of a delayed nonlocal reaction-diffusion heroin epidemic model in a heterogenous environment
    Djilali, Salih
    Chen, Yuming
    Bentout, Soufiane
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, : 273 - 307
  • [29] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258