Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips

被引:8
|
作者
Gelman Constantin, Julian [1 ,2 ]
Carignano, Marcelo A. [3 ]
Corti, Horacio R. [1 ,2 ]
Szleifer, Igal [4 ]
机构
[1] Comis Nacl Energia Atom, Ctr Atom Constituyentes, Dept Fis Mat Condensada, RA-1429 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Quim Fis Mat Med Ambiente & Energia INQUIMAE, Buenos Aires, DF, Argentina
[3] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, Qatar Fdn, Doha, Qatar
[4] Northwestern Univ, Dept Chem, Chem Life Proc Inst, Dept Biomed Engn, Evanston, IL 60208 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 48期
基金
美国国家科学基金会;
关键词
LIQUID-LIKE LAYER; TRANSITION LAYER; SURFACE; WATER; INTERFACES; GROWTH; ORDER; TEMPERATURE; FILMS;
D O I
10.1021/acs.jpcc.5b10230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed extensive molecular dynamics simulations of nanoindentation of an ice slab with model atomic force microscopy (AFM) tips. We found the presence of a quasi-liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), the force versus indentation depth curves present peaks related to the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm) having a size not commensurate with the average monolayer thickness, we did not find a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.
引用
收藏
页码:27118 / 27124
页数:7
相关论文
共 50 条
  • [1] Molecular dynamics simulation of bimodal atomic force microscopy
    Dou, Zhipeng
    Qian, Jianqiang
    Li, Yingzi
    Wang, Zhenyu
    Zhang, Yingxu
    Lin, Rui
    Wang, Tingwei
    ULTRAMICROSCOPY, 2020, 212
  • [2] Molecular dynamics simulation of amplitude modulation atomic force microscopy
    Hu, Xiaoli
    Egberts, Philip
    Dong, Yalin
    Martini, Ashlie
    NANOTECHNOLOGY, 2015, 26 (23)
  • [3] Use of molecular dynamics simulation in interpreting the atomic force microscopy data
    Godsie M.G.
    Tolstova A.P.
    Oferkin I.V.
    Biophysics, 2010, 55 (3) : 370 - 376
  • [4] CAN ATOMIC FORCE MICROSCOPY TIPS BE INSPECTED BY ATOMIC FORCE MICROSCOPY
    HELLEMANS, L
    WAEYAERT, K
    HENNAU, F
    STOCKMAN, L
    HEYVAERT, I
    VANHAESENDONCK, C
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 1309 - 1312
  • [5] Molecular-level imaging of ice crystal structure and dynamics by atomic force microscopy
    Ogawa, K
    Majumdar, A
    MICROSCALE THERMOPHYSICAL ENGINEERING, 1999, 3 (02): : 101 - 110
  • [6] Molecular dynamics simulation of cell membrane penetration by atomic force microscopy tip
    Zhang, Guocheng
    Jiang, Hai
    Fan, Na
    Yang, Longxiang
    Guo, Jian
    Peng, Bei
    MODERN PHYSICS LETTERS B, 2018, 32 (18):
  • [7] Interactions between CTAB and montmorillonite by atomic force microscopy and molecular dynamics simulation
    Shi, Zhiping
    Li, Pengxiang
    Liu, Liyan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
  • [8] BioAFMviewer software for simulation atomic force microscopy of molecular structures and conformational dynamics
    Amyot, Romain
    Kodera, Noriyuki
    Flechsig, Holger
    JOURNAL OF STRUCTURAL BIOLOGY-X, 2023, 7
  • [9] Conductive tips for atomic force microscopy
    不详
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 139 - 139
  • [10] Gel tips for atomic force microscopy
    Sano, M
    Okamura, J
    Shinkai, S
    LANGMUIR, 1999, 15 (23) : 7890 - 7893