Delayed feedback control and phase reduction of unstable quasi-periodic orbits

被引:5
|
作者
Ichinose, Natsuhiro [1 ]
Komuro, Motomasa [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[2] Teikyo Univ Sci, Ctr Fundamental Educ, Uenohara, Yamanashi 4090193, Japan
关键词
ROTATION NUMBER; SYSTEMS; CHAOS;
D O I
10.1063/1.4896219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The delayed feedback control (DFC) is applied to stabilize unstable quasi-periodic orbits (QPOs) in discrete-time systems. The feedback input is given by the difference between the current state and a time-delayed state in the DFC. However, there is an inevitable time-delay mismatch in QPOs. To evaluate the influence of the time-delay mismatch on the DFC, we propose a phase reduction method for QPOs and construct a phase response curve (PRC) from unstable QPOs directly. Using the PRC, we estimate the rotation number of QPO stabilized by the DFC. We show that the orbit of the DFC is consistent with the unstable QPO perturbed by a small state difference resulting from the time-delay mismatch, implying that the DFC can certainly stabilize the unstable QPO. (C) 2014 AIP Publishing
引用
收藏
页数:6
相关论文
共 50 条
  • [41] About Tidal Evolution of Quasi-Periodic Orbits of Satellites
    Sergey V. Ershkov
    Earth, Moon, and Planets, 2017, 120 : 15 - 30
  • [42] Quasi-Periodic Orbits of a Difference Equation with Varied Coefficients
    Ren, Xiufang
    Zhang, Yuhang
    Zhao, Shiji
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (01):
  • [43] EXISTENCE OF QUASI-PERIODIC ORBITS FOR TWIST HOMEOMORPHISMS OF THE ANNULUS
    MATHER, JN
    TOPOLOGY, 1982, 21 (04) : 457 - 467
  • [44] Stabilization of unstable periodic orbits in a Duffing system using an optimal time-delayed feedback control and pseudospectral method
    Piccirillo, Vinicius
    Balthazar, Jose Manoel
    Lima, Jeferson Jose
    Tusset, Angelo Marcelo
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [45] About Tidal Evolution of Quasi-Periodic Orbits of Satellites
    Ershkov, Sergey V.
    EARTH MOON AND PLANETS, 2017, 120 (01): : 15 - 30
  • [46] THE BREAKUP OF QUASI-PERIODIC ORBITS NEAR JOVIAN RESONANCES
    SAHA, P
    ICARUS, 1990, 87 (01) : 103 - 109
  • [47] Stability of Quasi-Periodic Orbits in Recurrent Neural Networks
    R. L. Marichal
    J. D. Piñeiro
    E. J. González
    J. Torres
    Neural Processing Letters, 2010, 31 : 269 - 281
  • [48] Stability of Quasi-Periodic Orbits in Recurrent Neural Networks
    Marichal, R. L.
    Pineiro, J. D.
    Gonzalez, E. J.
    Torres, J.
    NEURAL PROCESSING LETTERS, 2010, 31 (03) : 269 - 281
  • [49] PERIODIC, QUASI-PERIODIC AND CHAOTIC ORBITS AND THEIR BIFURCATIONS IN A SYSTEM OF COUPLED OSCILLATORS
    AWREJCEWICZ, J
    SOMEYA, T
    JOURNAL OF SOUND AND VIBRATION, 1991, 146 (03) : 527 - 532
  • [50] Analysis of Periodic and Quasi-Periodic Orbits in the Earth-Moon System
    Dutt, Pooja
    Sharma, R. K.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (03) : 1010 - 1017