Delayed feedback control and phase reduction of unstable quasi-periodic orbits

被引:5
|
作者
Ichinose, Natsuhiro [1 ]
Komuro, Motomasa [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[2] Teikyo Univ Sci, Ctr Fundamental Educ, Uenohara, Yamanashi 4090193, Japan
关键词
ROTATION NUMBER; SYSTEMS; CHAOS;
D O I
10.1063/1.4896219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The delayed feedback control (DFC) is applied to stabilize unstable quasi-periodic orbits (QPOs) in discrete-time systems. The feedback input is given by the difference between the current state and a time-delayed state in the DFC. However, there is an inevitable time-delay mismatch in QPOs. To evaluate the influence of the time-delay mismatch on the DFC, we propose a phase reduction method for QPOs and construct a phase response curve (PRC) from unstable QPOs directly. Using the PRC, we estimate the rotation number of QPO stabilized by the DFC. We show that the orbit of the DFC is consistent with the unstable QPO perturbed by a small state difference resulting from the time-delay mismatch, implying that the DFC can certainly stabilize the unstable QPO. (C) 2014 AIP Publishing
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Locating unstable periodic orbits: When adaptation integrates into delayed feedback control
    Lin, Wei
    Ma, Huanfei
    Feng, Jianfeng
    Chen, Guanrong
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):
  • [2] Sampled-Data Delayed Feedback Control for Stabilizing Unstable Periodic Orbits
    Cetinkaya, Ahmet
    Hayakawa, Tomohisa
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1409 - 1414
  • [3] Stabilizing unstable periodic orbits of dynamical systems using delayed feedback control with periodic gain
    Leonov G.A.
    Moskvin A.V.
    [J]. International Journal of Dynamics and Control, 2018, 6 (2) : 601 - 608
  • [4] CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK
    BIELAWSKI, S
    DEROZIER, D
    GLORIEUX, P
    [J]. PHYSICAL REVIEW E, 1994, 49 (02): : R971 - R974
  • [5] Stabilizing unstable periodic orbits with delayed feedback control in act-and-wait fashion
    Cetinkaya, Ahmet
    Hayakawa, Tomohisa
    Taib, Mohd Amir Fikri Bin Mohd
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 113 : 71 - 77
  • [6] Tracking unstable periodic orbits in chaotic systems via time delayed feedback control
    Yu, XH
    Chen, GR
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1942 - 1945
  • [7] BIFURCATION OF QUASI-PERIODIC OSCILLATIONS IN MUTUALLY COUPLED HARD-TYPE OSCILLATORS: DEMONSTRATION OF UNSTABLE QUASI-PERIODIC ORBITS
    Kamiyama, Kyohei
    Komuro, Motomasa
    Endo, Tetsuro
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [8] ASYMMETRIC QUASI-PERIODIC ORBITS
    MARKELLOS, VV
    [J]. ASTRONOMY & ASTROPHYSICS, 1978, 70 (03) : 319 - 325
  • [9] PERIODIC AND QUASI-PERIODIC EARTH SATELLITE ORBITS
    KAMMEYER, PC
    [J]. CELESTIAL MECHANICS, 1976, 14 (02): : 159 - 165
  • [10] Periodic and quasi-periodic orbits for the standard map
    Berretti, A
    Gentile, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (01) : 135 - 156