Super Vertex Magic Circulant Graphs

被引:0
|
作者
不详
机构
关键词
vertex magic total labeling; super vertex magic labeling; even factor; circulant graphs; TOTAL LABELINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a finite simple graph with p = vertical bar V vertical bar vertices and q = vertical bar E vertical bar edges, without any isolated vertex or any isolated edge. A vertex magic total labeling of the graph G is a bijection f from V boolean OR E to the set of consecutive integers {1, 2, ..., p + q}, such that for every vertex u is an element of V, the weight f (u) + E-uv is an element of E f(uv) is constant. Moreover if f (V) = {1,2, ..., p}, f is called a super vertex magic total labeling. A graph is (super) vertex magic if it admits a (super) vertex magic total labeling. In 2002 MacDougall et al. first introduced the concept of vertex magic total labeling and studied their properties. In this paper we study the existence of super vertex magic total labelings for a class of 5-regular circulant graphs. Applications to other classes of graphs and open problems are also included.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 50 条
  • [41] The Super Magic Properties of Connected and Disconnected Graphs
    Dayanand, G. K.
    Ahmed, Shabbir
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2015, 36 (03): : 231 - 246
  • [42] Perfect super edge-magic graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (02): : 199 - 208
  • [43] On super edge-magic decomposable graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 455 - 473
  • [44] On super edge-magic decomposable graphs
    S. C. López
    F. A. Muntaner-Batle
    M. Rius-Font
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 455 - 473
  • [45] On Strong, Ideal and Weak Super Magic Graphs
    Boonklurb, R.
    Srichote, W.
    Singhun, S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (01) : 17 - 33
  • [46] On super edge magic deficiency of kite graphs
    Ahmad, Ali
    Siddiqui, M. K.
    Nadeem, M. F.
    Imran, M.
    ARS COMBINATORIA, 2012, 107 : 201 - 208
  • [47] Super edge-magic deficiency of graphs
    Baig, A. Q.
    Imran, M.
    Javaid, I.
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2012, 87 : 355 - 364
  • [48] Vertex fault tolerance of optimal-κ graphs and super-κ graphs
    Hong, Yanmei
    Zhang, Zhao
    INFORMATION PROCESSING LETTERS, 2009, 109 (20) : 1151 - 1155
  • [49] OPTIMAL ADJACENT VERTEX-DISTINGUISHING EDGE-COLORINGS OF CIRCULANT GRAPHS
    Gravier, Sylvain
    Signargout, Hippolyte
    Slimani, Souad
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1341 - 1359
  • [50] Sparse anti-magic squares and vertex-magic labelings of bipartite graphs
    Gray, I. D.
    MacDougall, J. A.
    DISCRETE MATHEMATICS, 2006, 306 (22) : 2878 - 2892