The Ostaszewski square and homogeneous Souslin trees

被引:10
|
作者
Rinot, Assaf [1 ]
机构
[1] Ben Gurion Univ Negev, Ctr Adv Studies Math, IL-84105 Beer Sheva, Israel
关键词
DIAMONDS; UNIFORMIZATION;
D O I
10.1007/s11856-013-0065-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume GCH and let lambda denote an uncountable cardinal. We prove that if a-(lambda) holds, then this may be witnessed by a coherent sequence < C-alpha|alpha < lambda(+)> with the following remarkable guessing property For every sequence < A (i) | i < lambda > of unbounded subsets of lambda(+), and every limit theta < lambda, there exists some alpha < lambda(+) such that otp(C-alpha) = theta and the (i + 1)(th) -element of C-alpha is a member of A(i) , for all i < theta. As an application, we construct a homogeneous lambda(+)-Souslin tree from a-(lambda) + CH lambda, for every singular cardinal lambda. In addition, as a by-product, a theorem of Farah and VelikoviA double dagger, and a theorem of Abraham, Shelah and Solovay are generalized to cover the case of successors of regulars.
引用
下载
收藏
页码:975 / 1012
页数:38
相关论文
共 50 条
  • [31] The wave equation on homogeneous trees
    Medolla G.
    Setti A.G.
    Annali di Matematica Pura ed Applicata, 1999, 176 (1) : 1 - 27
  • [32] Colonization and Collapse on Homogeneous Trees
    Machado, Fabio P.
    Roldan-Correa, Alejandro
    Junior, Valdivino V.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (05) : 1386 - 1407
  • [33] On the Geometry of Similarly Homogeneous ℝ-Trees
    P. D. Andreev
    A. I. Bulygin
    Russian Mathematics, 2020, 64 : 1 - 11
  • [34] Lpspherical multipliers on homogeneous trees
    Celotto, Dario
    Meda, Stefano
    Wrobel, Blazej
    STUDIA MATHEMATICA, 2019, 247 (02) : 175 - 190
  • [35] Spectral analysis on homogeneous trees
    Cohen, JM
    Colonna, F
    ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (02) : 253 - 274
  • [36] Colonization and Collapse on Homogeneous Trees
    Fábio P. Machado
    Alejandro Roldán-Correa
    Valdivino V. Junior
    Journal of Statistical Physics, 2018, 173 : 1386 - 1407
  • [37] Riesz means on homogeneous trees
    Papageorgiou, Effie
    CONCRETE OPERATORS, 2021, 8 (01): : 60 - 65
  • [38] Schrodinger Equation on Homogeneous Trees
    Eddine, Alaa Jamal
    JOURNAL OF LIE THEORY, 2013, 23 (03) : 779 - 794
  • [39] An uncertainty principle on homogeneous trees
    Astengo, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) : 3155 - 3161
  • [40] HOMOGENEOUS TREES ARE BILIPSCHITZ EQUIVALENT
    PAPASOGLU, P
    GEOMETRIAE DEDICATA, 1995, 54 (03) : 301 - 306