SOLVABILITY CONDITIONS FOR THE NONLOCAL BOUNDARY-VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION WITH WEAK NONLINEARITY IN THE REFINED SOBOLEV SCALE OF SPACES OF FUNCTIONS OF MANY REAL VARIABLES
被引:0
|
作者:
Il'kiv, V. S.
论文数: 0引用数: 0
h-index: 0
机构:
Lvivs Ka Politekhn Natl Univ, Lvov, UkraineLvivs Ka Politekhn Natl Univ, Lvov, Ukraine
Il'kiv, V. S.
[1
]
Strap, N. I.
论文数: 0引用数: 0
h-index: 0
机构:
Lvivs Ka Politekhn Natl Univ, Lvov, UkraineLvivs Ka Politekhn Natl Univ, Lvov, Ukraine
Strap, N. I.
[1
]
Volyanska, I. I.
论文数: 0引用数: 0
h-index: 0
机构:
Lvivs Ka Politekhn Natl Univ, Lvov, UkraineLvivs Ka Politekhn Natl Univ, Lvov, Ukraine
We study the solvability of the nonlocal boundary-value problem for a differential equation with weak nonlinearity. By using the Nash-Mozer iterative scheme, we establish the solvability conditions for the posed problem in the Hilbert Hormander spaces of functions of several real variables, which form a refined Sobolev scale.