SOLVABILITY CONDITIONS FOR THE NONLOCAL BOUNDARY-VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION WITH WEAK NONLINEARITY IN THE REFINED SOBOLEV SCALE OF SPACES OF FUNCTIONS OF MANY REAL VARIABLES

被引:0
|
作者
Il'kiv, V. S. [1 ]
Strap, N. I. [1 ]
Volyanska, I. I. [1 ]
机构
[1] Lvivs Ka Politekhn Natl Univ, Lvov, Ukraine
关键词
PERIODIC-SOLUTIONS; CANTOR FAMILIES;
D O I
10.1007/s11253-020-01798-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the solvability of the nonlocal boundary-value problem for a differential equation with weak nonlinearity. By using the Nash-Mozer iterative scheme, we establish the solvability conditions for the posed problem in the Hilbert Hormander spaces of functions of several real variables, which form a refined Sobolev scale.
引用
收藏
页码:515 / 535
页数:21
相关论文
共 34 条