A new perspective on the order-n algorithm for computing correlation functions

被引:82
|
作者
Dubbeldam, David [1 ]
Ford, Denise C. [1 ]
Ellis, Donald E. [2 ]
Snurr, Randall Q. [1 ]
机构
[1] Northwestern Univ, Chem & Biol Engn Dept, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
correlation; diffusion; order-n; MOLECULAR-DYNAMICS SIMULATIONS; STATISTICAL-MECHANICAL THEORY; MARKOV RANDOM-PROCESSES; IRREVERSIBLE-PROCESSES; TRANSPORT DIFFUSION; LIGHT GASES; ZEOLITES; DESIGN; METHANE;
D O I
10.1080/08927020902818039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method to measure correlations is presented that can be shown to be identical to the original 'order-n algorithm' from Frenkel and Smit (Understanding Molecular Simulation, Academic Press, 2002). In contrast to their work, we present the algorithm without the use of 'block sums of velocities'. We show that the algorithm gives identical results compared to standard correlation methods for the time points at which the correlation is computed. We apply the algorithm to compute diffusion of methane and benzene in the metal-organic framework IRMOF-1 and focus on the computation of the mean-squared displacement, the velocity autocorrelation function (VACF), and the angular VACF. Other correlation functions can readily be computed using the same algorithm. The savings in computer time and memory result from a reduction of the number of time points, as they can be chosen non-uniformly. In addition, the algorithm is significantly easier to implement than standard methods. Source code for the algorithm is given.
引用
收藏
页码:1084 / 1097
页数:14
相关论文
共 50 条
  • [31] OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order-n Algorithm in LAMMPS
    Jamali, Seyed Hossein
    Wolff, Ludger
    Becker, Tim M.
    de Groen, Mariette
    Ramdin, Mahinder
    Hartkamp, Remco
    Bardow, Andre
    Vlugt, Thijs J. H.
    Moultos, Othonas A.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (04) : 1290 - 1294
  • [32] STABILITY OF LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS OF ORDER-N
    MILLER, RK
    MICHEL, AN
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) : 1089 - 1091
  • [33] Order-N method to calculate the local density of states
    Li, J
    Yip, S
    PHYSICAL REVIEW B, 1997, 56 (07): : 3524 - 3527
  • [34] ORDER-N SPECTRAL METHOD FOR ELECTROMAGNETIC-WAVES
    CHAN, CT
    YU, QL
    HO, KM
    PHYSICAL REVIEW B, 1995, 51 (23): : 16635 - 16642
  • [35] Order-N formulation and dynamics of multibody tethered systems
    Kalantzis, S
    Modi, VJ
    Pradhan, S
    Misra, AK
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (02) : 277 - 285
  • [36] OSCILLATORY PROPERTIES OF SOLUTIONS TO A DIFFERENTIAL INCLUSION OF ORDER-N
    SVEC, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (01) : 35 - 43
  • [37] COLLINEATION GROUPS OF PROJECTIVE-PLANES OF ORDER-N
    ROTMAN, JJ
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 313 - 331
  • [38] Improved 'Order-N' performance algorithm for the simulation of constrained multi-rigid-body dynamic systems
    Anderson, KS
    Critchley, JH
    MULTIBODY SYSTEM DYNAMICS, 2003, 9 (02) : 185 - 212
  • [39] Improved `Order-N' Performance Algorithm for the Simulation of Constrained Multi-Rigid-Body Dynamic Systems
    K.S. Anderson
    J.H. Critchley
    Multibody System Dynamics, 2003, 9 : 185 - 212
  • [40] The order-n minors of certain (n plus k) x n matrices
    Bag, Priyabrata
    Dey, Santanu
    Nagisa, Masaru
    Osaka, Hiroyuki
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 : 368 - 389