A new perspective on the order-n algorithm for computing correlation functions

被引:82
|
作者
Dubbeldam, David [1 ]
Ford, Denise C. [1 ]
Ellis, Donald E. [2 ]
Snurr, Randall Q. [1 ]
机构
[1] Northwestern Univ, Chem & Biol Engn Dept, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
correlation; diffusion; order-n; MOLECULAR-DYNAMICS SIMULATIONS; STATISTICAL-MECHANICAL THEORY; MARKOV RANDOM-PROCESSES; IRREVERSIBLE-PROCESSES; TRANSPORT DIFFUSION; LIGHT GASES; ZEOLITES; DESIGN; METHANE;
D O I
10.1080/08927020902818039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method to measure correlations is presented that can be shown to be identical to the original 'order-n algorithm' from Frenkel and Smit (Understanding Molecular Simulation, Academic Press, 2002). In contrast to their work, we present the algorithm without the use of 'block sums of velocities'. We show that the algorithm gives identical results compared to standard correlation methods for the time points at which the correlation is computed. We apply the algorithm to compute diffusion of methane and benzene in the metal-organic framework IRMOF-1 and focus on the computation of the mean-squared displacement, the velocity autocorrelation function (VACF), and the angular VACF. Other correlation functions can readily be computed using the same algorithm. The savings in computer time and memory result from a reduction of the number of time points, as they can be chosen non-uniformly. In addition, the algorithm is significantly easier to implement than standard methods. Source code for the algorithm is given.
引用
收藏
页码:1084 / 1097
页数:14
相关论文
共 50 条
  • [1] A NOTE ON THE PARALLEL COMPLEXITY OF COMPUTING THE RANK OF ORDER-N MATRICES
    IBARRA, OH
    MORAN, S
    ROSIER, LE
    INFORMATION PROCESSING LETTERS, 1980, 11 (4-5) : 162 - 162
  • [2] THE CUSP OF ORDER-N
    JOYAL, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 88 (01) : 1 - 14
  • [3] Efficient Quantum Algorithm for Computing n-time Correlation Functions
    Pedernales, J. S.
    Di Candia, R.
    Egusquiza, I. L.
    Casanova, J.
    Solano, E.
    PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [4] Order-N methodologies and their applications
    Wu, SY
    Jayanthi, CS
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 358 (01): : 1 - 74
  • [5] NUMBER OF SEMIGROUPS OF ORDER-N
    KLEITMAN, DJ
    ROTHSCHILD, BR
    SPENCER, JH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (01) : 227 - 232
  • [6] An Order-N Complexity Meshless Algorithm Based on Local Hermitian Interpolation
    Stevens, David
    Power, Henry
    Morvan, Herve
    PROGRESS ON MESHLESS METHODS, 2009, 11 : 99 - 124
  • [7] Towards an order-N DFT method
    Guerra, CF
    Snijders, JG
    te Velde, G
    Baerends, EJ
    THEORETICAL CHEMISTRY ACCOUNTS, 1998, 99 (06) : 391 - 403
  • [8] ON THE UNIQUENESS OF THE CYCLIC GROUP OF ORDER-N
    JUNGNICKEL, D
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (06): : 545 - 547
  • [9] ELEMENT BY ELEMENT SOLVERS OF ORDER-N
    LEVIT, I
    COMPUTERS & STRUCTURES, 1987, 27 (03) : 357 - 360
  • [10] CYCLIC POST ALGEBRAS OF ORDER-N
    ABAD, M
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (02): : 243 - 246