MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images

被引:12
|
作者
Shuai, Wenjing [1 ]
Jiang, Fenlong [2 ]
Zheng, Hanhong [2 ]
Li, Jianzhao [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710121, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
基金
中国国家自然科学基金;
关键词
change detection; superpixel segmentation; graph attention network; remote sensing images; UNSUPERVISED CHANGE DETECTION; CHANGE VECTOR ANALYSIS; COVER CHANGE DETECTION; SAMPLE CONSENSUS; TIME-SERIES; REGISTRATION; ALGORITHMS;
D O I
10.3390/app12105158
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid development of Earth observation technology, how to effectively and efficiently detect changes in multi-temporal images has become an important but challenging problem. Relying on the advantages of high performance and robustness, object-based change detection (CD) has become increasingly popular. By analyzing the similarity of local pixels, object-based CD aggregates similar pixels into one object and takes it as the basic processing unit. However, object-based approaches often have difficulty capturing discriminative features, as irregular objects make processing difficult. To address this problem, in this paper, we propose a novel superpixel-based multi-scale Siamese graph attention network (MSGATN) which can process unstructured data natively and extract valuable features. First, a difference image (DI) is generated by Euclidean distance between bitemporal images. Second, superpixel segmentation is employed based on DI to divide each image into many homogeneous regions. Then, these superpixels are used to model the problem by graph theory to construct a series of nodes with the adjacency between them. Subsequently, the multi-scale neighborhood features of the nodes are extracted through applying a graph convolutional network and concatenated by an attention mechanism. Finally, the binary change map can be obtained by classifying each node by some fully connected layers. The novel features of MSGATN can be summarized as follows: (1) Training in multi-scale constructed graphs improves the recognition over changed land cover of varied sizes and shapes. (2) Spectral and spatial self-attention mechanisms are exploited for a better change detection performance. The experimental results on several real datasets show the effectiveness and superiority of the proposed method. In addition, compared to other recent methods, the proposed can demonstrate very high processing efficiency and greatly reduce the dependence on labeled training samples in a semisupervised training fashion.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Transformer-based multi-scale feature fusion network for remote sensing change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [42] CBSASNet: A Siamese Network Based on Channel Bias Split Attention for Remote Sensing Change Detection
    He, Naiwei
    Wang, Liejun
    Zheng, Panpan
    Zhang, Cui
    Li, Lele
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [43] Remote Sensing Small Object Detection Network Based on Attention Mechanism and Multi-Scale Feature Fusion
    Qu, Junsuo
    Tang, Zongbing
    Zhang, Le
    Zhang, Yanghai
    Zhang, Zhenguo
    REMOTE SENSING, 2023, 15 (11)
  • [44] MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images
    Ren, Wuxu
    Wang, Zhongchen
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2024, 16 (07)
  • [45] Deep Siamese Networks Based Change Detection with Remote Sensing Images
    Yang, Le
    Chen, Yiming
    Song, Shiji
    Li, Fan
    Huang, Gao
    REMOTE SENSING, 2021, 13 (17)
  • [46] Global-aware siamese network for change detection on remote sensing images
    Zhang, Ruiqian
    Zhang, Hanchao
    Ning, Xiaogang
    Huang, Xiao
    Wang, Jiaming
    Cui, Wei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 61 - 72
  • [47] A Semisupervised Siamese Network for Efficient Change Detection in Heterogeneous Remote Sensing Images
    Jiang, Xiao
    Li, Gang
    Zhang, Xiao-Ping
    He, You
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] Hyperboloid-Embedded Siamese Network for Change Detection in Remote Sensing Images
    Yang, Qian
    Zhang, Shujun
    Li, Jinsong
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9240 - 9252
  • [49] A Siamese Multiscale Attention Decoding Network for Building Change Detection on High-Resolution Remote Sensing Images
    Chen, Yao
    Zhang, Jindou
    Shao, Zhenfeng
    Huang, Xiao
    Ding, Qing
    Li, Xianyi
    Huang, Youju
    REMOTE SENSING, 2023, 15 (21)
  • [50] Multi-scale Self-attention-based Few-shot Object Detection for Remote Sensing Images
    Wang, Run
    Wang, Qiong
    Yu, Jiawei
    Tong, Jiaxing
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,