Estimation Procedure for a Multiple Time Series Model

被引:2
|
作者
Cruz, Rolan Paul K. Veron [1 ]
Barrios, Erniel B. [1 ]
机构
[1] Univ Philippines Diliman, Sch Stat, Quezon City 1101, Philippines
关键词
Additive models; Backfitting; GMM estimator; Mixed model; Multiple time series; Panel data; SPATIAL-TEMPORAL MODEL;
D O I
10.1080/03610918.2012.752838
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a multiple time series sharing common autoregressive patterns, we estimate an additive model. The autoregressive component and the individual random effects are estimated by integrating maximum likelihood estimation and best linear unbiased predictions in a backfitting algorithm. The simulation study illustrated that the estimation procedure provides an alternative to the Arellano-Bond generalized method of moments ( GMM) estimator of the panel model when T > N and the Arellano-Bond generally diverges. The estimator has high predictive ability. In cases where T <= N, the backfitting estimator is at least comparable to Arellano-Bond estimator.
引用
收藏
页码:2415 / 2431
页数:17
相关论文
共 50 条
  • [31] A New Parameter Estimation Algorithm of Multivariable Time Series Model
    Wu Qinglie Xu Nanrong (School of Economics & Management
    JOURNAL OF SOUTHEAST UNIVWRSITY(ENGLED.)., 1996, (01) : 100 - 105
  • [32] Estimation of Lyapunov spectrum and model selection for a chaotic time series
    Li, Qinglan
    Xu, Pengcheng
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (12) : 6090 - 6099
  • [33] Preliminary estimation for identifying transfer function model with multiple input series
    Kim, Moosup
    KOREAN JOURNAL OF APPLIED STATISTICS, 2025, 38 (01)
  • [34] A Novel Fuzzy Time Series Forecasting Model Based on Multiple Linear Regression and Time Series Clustering
    Zhang, Yanpeng
    Qu, Hua
    Wang, Weipeng
    Zhao, Jihong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [35] A simplified estimation procedure based on the EM algorithm for the power series cure rate model
    Gallardo, Diego I.
    Romeo, Jose S.
    Meyer, Renate
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6342 - 6359
  • [36] Multiple Time Series Ising Model for Financial Market Simulations
    Takaishi, Tetsuya
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [37] A New Model for Multiple Time Series Based on Data Mining
    Chen Zhuo
    Yang Bing-ru
    Zhou Fa-guo
    Li Lin-na
    Zhao Yun-feng
    KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 39 - 43
  • [38] PMEM: Predicting Multiple Time Series using Ensemble Model
    Hulipalled, Vishwanath R.
    Patnaik, L. M.
    Srikantaiah, K. C.
    Venugopal, K. R.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2016, : 468 - 473
  • [39] A Smooth Transition Model for Multiple-Regime Time Series
    Sanquer, Matthieu
    Chatelain, Florent
    El-Guedri, Mabrouka
    Martin, Nadine
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) : 1835 - 1847
  • [40] Time series mixture model considering dependence to multiple topics
    Sasaki, Kentaro
    Yoshikawa, Tomohiro
    Furuhashi, Takeshi
    Transactions of the Japanese Society for Artificial Intelligence, 2015, 30 (02) : 466 - 472