Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery

被引:30
|
作者
Ong, Hon Shing [1 ]
Evans, Jennifer R. [2 ]
Allan, Bruce D. S. [3 ]
机构
[1] Moorfields Eye Hosp NHS Fdn Trust, London EC1V 2PD, England
[2] London Sch Hyg & Trop Med, ICEH, Cochrane Eyes & Vis Grp, London WC1, England
[3] Moorfields Eye Hosp NHS Fdn Trust, External Dis Serv, London EC1V 2PD, England
来源
COCHRANE DATABASE OF SYSTEMATIC REVIEWS | 2014年 / 05期
关键词
CONTRAST SENSITIVITY; PRESBYOPIA; MONOVISION; MOVEMENT; TRIALS; LASIK;
D O I
10.1002/14651858.CD009667.pub2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Following cataract surgery and intraocular lens (IOL) implantation, loss of accommodation or postoperative presbyopia occurs and remains a challenge. Standard monofocal IOLs correct only distance vision; patients require spectacles for near vision. Accommodative IOLs have been designed to overcome loss of accommodation after cataract surgery. Objectives To define (a) the extent to which accommodative IOLs improve unaided near visual function, in comparison with monofocal IOLs; (b) the extent of compromise to unaided distance visual acuity; c) whether a higher rate of additional complications is associated the use of accommodative IOLs. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 9), Ovid MEDLINE, Ovid MEDLINE in-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily Update, Ovid OLDMEDLINE (January 1946 to October 2013), EMBASE (January 1980 to October 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to October 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrial.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 10 October 2013. Selection criteria We include randomised controlled trials (RCTs) which compared implantation of accommodative IOLs to implantation of monofocal IOLs in cataract surgery. Data collection and analysis Two authors independently screened search results, assessed risk of bias and extracted data. All included trials used the 1CU accommodative IOL (HumanOptics, Erlangen, Germany) for their intervention group. One trial had an additional arm with the AT-45 Crystalens accommodative IOL (Eyeonics Vision). We performed a separate analysis comparing 1CU and AT-45 IOL. Main results We included four RCTs, including 229 participants (256 eyes), conducted in Germany, Italy and the UK. The age range of participants was 21 to 87 years. All studies included people who had bilateral cataracts with no pre-existing ocular pathologies. We judged all studies to be at high risk of performance bias. We graded two studies with high risk of detection bias and one study with high risk of selection bias. Participants who received the accommodative IOLs achieved better distance-corrected near visual acuity (DCNVA) at six months (mean difference (MD) -3.10 Jaeger units; 95% confidence intervals (CI) -3.36 to -2.83, 2 studies, 106 people, 136 eyes, moderate quality evidence). Better DCNVA was seen in the accommodative lens group at 12 to 18 months in the three trials that reported this time point but considerable heterogeneity of effect was seen, ranging from 1.3 (95% CI 0.98 to 1.68; 20 people, 40 eyes) to 6 (95% CI 4.15 to 7.85; 51 people, 51 eyes) Jaeger units and 0.12 (95% CI 0.05 to 0.19; 40 people, binocular) logMAR improvement (low quality evidence). The relative effect of the lenses on corrected distant visual acuity (CDVA) was less certain. At six months there was a standardised mean difference of -0.04 standard deviations (95% CI -0.37 to 0.30, 2 studies, 106 people, 136 eyes, low quality evidence). At long-term follow-up there was heterogeneity of effect with 18-month data in two studies showing that CDVA was better in the monofocal group (MD 0.12 logMAR; 95% CI 0.07 to 0.16, 2 studies, 70 people, 100 eyes) and one study which reported data at 12 months finding similar CDVA in the two groups (-0.02 logMAR units, 95% CI -0.06 to 0.02, 51 people) (low quality evidence). The relative effect of the lenses on reading speed and spectacle independence was uncertain, The average reading speed was 11.6 words per minute more in the accommodative lens group but the 95% confidence intervals ranged from 12.2 words less to 35.4 words more (1 study, 40 people, low quality evidence). People with accommodative lenses were more likely to be spectacle-independent but the estimate was very uncertain (risk ratio (RR) 8.18; 95% CI 0.47 to 142.62, 1 study, 40 people, very low quality evidence). More cases of posterior capsule opacification (PCO) were seen in accommodative lenses but the effect of the lenses on PCO was uncertain (Peto odds ratio (OR) 2.12; 95% CI 0.45 to 10.02, 91 people, 2 studies, low quality evidence). People in the accommodative lens group were more likely to require laser capsulotomy (Peto OR 7.96; 95% CI 2.49 to 25.45, 2 studies, 60 people, 80 eyes, low quality evidence). Glare was reported less frequently with accommodative lenses but the relative effect of the lenses on glare was uncertain (RR any glare 0.78; 95% CI 0.32 to 1.90, 1 study, 40 people, and RR moderate/severe glare 0.45; 95% CI 0.04 to 4.60, low quality evidence). Authors' conclusions There is moderate-quality evidence that study participants who received accommodative IOLs had a small gain in near visual acuity after six months. There is some evidence that distance visual acuity with accommodative lenses may be worse after 12 months but due to low quality of evidence and heterogeneity of effect, the evidence for this is not clear-cut. People receiving accommodative lenses had more PCO which may be associated with poorer distance vision. However, the effect of the lenses on PCO was uncertain. Further research is required to improve the understanding of how accommodative IOLs may affect near visual function, and whether they provide any durable gains. Additional trials, with longer follow-up, comparing different accommodative IOLs, multifocal IOLs and monofocal IOLs, would help map out their relative efficacy, and associated late complications. Research is needed on control over capsular fibrosis postimplantation. Risks of bias, heterogeneity of outcome measures and study designs used, and the dominance of one design of accommodative lens in existing trials (the HumanOptics 1CU) mean that these results should be interpreted with caution. They may not be applicable to other accommodative IOL designs.
引用
收藏
页数:46
相关论文
共 50 条
  • [41] Optical quality of toric intraocular lens implantation in cataract surgery
    Xian-Wen Xiao
    Jing Hao
    Hong Zhang
    Fang Tian
    International Journal of Ophthalmology, 2015, 8 (01) : 66 - 71
  • [42] Phacoemulsification and intraocular lens implantation:: Recent trends in cataract surgery
    Kecová, H
    Necas, A
    ACTA VETERINARIA BRNO, 2004, 73 (01) : 85 - +
  • [43] Cataract surgery with toric intraocular lens implantation in patients with keratoconus
    Webers, V. S. C.
    Visser, N.
    Vandevenne, M. M. S.
    Bauer, N. J. C.
    Nuijts, R. M. M. A.
    ACTA OPHTHALMOLOGICA, 2020, 98 : 31 - 32
  • [44] Secondary intraocular lens implantation after cataract surgery in children
    Biglan, AW
    Cheng, KP
    Davis, JS
    Gerontis, CC
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 1997, 123 (02) : 224 - 234
  • [45] Microincisional cataract surgery and Thinoptx rollable intraocular lens implantation
    Necdet Cinhüseyinoglu
    Lider Celik
    Aylin Yaman
    Gül Arıkan
    Tülin Kaynak
    Süleyman Kaynak
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244 : 802 - 807
  • [46] Outcome of cataract surgery with primary intraocular lens implantation in children
    Ram, Jagat
    Gupta, Nishant
    Sukhija, Jaspreet Singh
    Chaudhary, Manish
    Verma, Neelam
    Kumar, Sunil
    Severia, Saurabh
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2011, 95 (08) : 1086 - 1090
  • [47] TORIC INTRAOCULAR LENS IMPLANTATION FOR ASTIGMATISM CORRECTION IN CATARACT SURGERY
    Vickovic, Ivanka Petric
    Loncar, Valentina Lacmanovic
    Mandic, Zdravko
    Ivekovic, Renata
    Herman, Jelena Skunca
    Sesar, Antonio
    ACTA CLINICA CROATICA, 2012, 51 (02) : 293 - 297
  • [48] Microincision cataract surgery with implantation of a bitoric intraocular lens using an enhanced program for intraocular lens power calculation
    Lesieur, Gilles
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2020, 30 (06) : 1308 - 1313
  • [49] Impact of intraocular lens characteristics on intraocular lens dislocation after cataract surgery
    Mayer-Xanthaki, Christoph Fidel
    Pregartner, Gudrun
    Hirnschall, Nino
    Falb, Thomas
    Sommer, Michael
    Findl, Oliver
    Wedrich, Andreas
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (11) : 1510 - 1514
  • [50] Cost-Effectiveness Analysis of Light Adjustable Lens Compared to Monofocal Intraocular Lens in Cataract Surgery
    Nishihara, Taiki W.
    Hu, Jenny Q.
    Buchholz, Rhiannon D.
    Murphy, James D.
    Afshari, Natalie A.
    JOURNAL OF REFRACTIVE SURGERY, 2023, 39 (11) : 777 - +