Deterministic Phonon Transport Predictions of Thermal Conductivity in Uranium Dioxide With Xenon Impurities

被引:5
|
作者
Harter, Jackson R. [1 ]
Oliveira, Laura de Sousa [2 ]
Truszkowska, Agnieszka [3 ]
Palmer, Todd S. [4 ]
Greaney, P. Alex [5 ]
机构
[1] Oregon State Univ, Nucl Sci & Engn, Radiat Transport & Reactor Phys, Corvallis, OR 97330 USA
[2] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[3] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97330 USA
[4] Oregon State Univ, Nucl Sci & Engn, Corvallis, OR 97330 USA
[5] Univ Calif Riverside, Dept Mech Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
来源
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; SCHEMES;
D O I
10.1115/1.4038554
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present a method for solving the Boltzmann transport equation (BTE) for phonons by modifying the neutron transport code Rattlesnake which provides a numerically efficient method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this approach, we have computed the reduction in thermal conductivity of uranium dioxide (UO2) due to the presence of a nanoscale xenon bubble across a range of temperatures. For these simulations, the values of group velocity and phonon mean free path in the UO2 were determined from a combination of experimental heat conduction data and first principles calculations. The same properties for the Xe under the high pressure conditions in the nanoscale bubble were computed using classical molecular dynamics (MD). We compare our approach to the other modern phonon transport calculations, and discuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels under irradiation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Monte Carlo simulation of the thermal conductivity and phonon transport in nanocomposites
    Jeng, Ming-Shan
    Yang, Ronggui
    Song, David
    Chen, Gang
    ADVANCES IN ELECTRONIC PACKAGING 2005, PTS A-C, 2005, : 2203 - 2211
  • [32] Lattice thermal conductivity and phonon transport properties of monolayer fluorographene
    Han, Seungbin
    Lee, Dongkyu
    Lee, Sungwoo
    Lee, Gun-Do
    Lee, Sangyeop
    Jang, Hyejin
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (13)
  • [33] Phonon transport and thermal conductivity percolation in random nanoparticle composites
    Tian, Weixue
    Yang, Ronggui
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 24 (2-3): : 123 - 141
  • [34] Clamped nanowire thermal conductivity based on phonon transport equation
    Volz, S
    Lemonnier, D
    Saulnier, JB
    MICROSCALE THERMOPHYSICAL ENGINEERING, 2001, 5 (03): : 191 - 207
  • [35] Suppressed thermal conductivity in fluorinated diamane: Optical phonon dominant thermal transport
    Zhu, Liyan
    Zhang, Tingting
    APPLIED PHYSICS LETTERS, 2019, 115 (15)
  • [36] Sintering behavior and thermal conductivity of graphite flakes/uranium dioxide composites
    Zhong, Yi
    Yang, Zhenliang
    Huang, Qiqi
    Wang, Zhiyi
    Wang, Yun
    Zhang, Dezhi
    Shi, Tao
    Wu, Min
    Li, Bingqing
    Gao, Rui
    Chu, Mingfu
    Zhang, Pengcheng
    Bai, Bin
    JOURNAL OF NUCLEAR MATERIALS, 2021, 555
  • [38] THERMAL-CONDUCTIVITY OF URANIUM-DIOXIDE BEFORE AND DURING IRRADIATION
    AVRAM, M
    STUDII SI CERCETARI DE FIZICA, 1973, 25 (07): : 879 - 884
  • [39] Thermal transport properties of uranium dioxide by molecular dynamics simulations
    Watanabe, Taku
    Sinnott, Susan B.
    Tulenko, James S.
    Grimes, Robin W.
    Schelling, Patrick K.
    Phillpot, Simon R.
    JOURNAL OF NUCLEAR MATERIALS, 2008, 375 (03) : 388 - 396
  • [40] EFFECT OF POROSITY AND STOICHIOMETRY ON THERMAL-CONDUCTIVITY OF URANIUM-DIOXIDE
    HOBSON, IC
    TAYLOR, R
    AINSCOUGH, JB
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1974, 7 (07) : 1003 - +