THE STABILITY OF DELAUNAY TRIANGULATIONS

被引:12
|
作者
Boissonnat, Jean-Daniel [1 ]
Dyer, Ramsay [1 ]
Ghosh, Arijit [1 ]
机构
[1] INRIA Sophia Antipolis, F-06902 Sophia Antipolis, France
关键词
Delaunay triangulation; stability; simplex quality;
D O I
10.1142/S0218195913600078
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of delta-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulations under perturbations of the metric and of the vertex positions. We quantify the magnitude of the perturbations under which the Delaunay triangulation remains unchanged.
引用
收藏
页码:303 / 333
页数:31
相关论文
共 50 条
  • [41] A Short Proof of the Toughness of Delaunay Triangulations
    Biniaz, Ahmad
    2020 SYMPOSIUM ON SIMPLICITY IN ALGORITHMS, SOSA, 2020, : 43 - 46
  • [42] A SHORT PROOF OF THE TOUGHNESS OF DELAUNAY TRIANGULATIONS
    Biniaz, Ahmad
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2021, 12 (01) : 35 - 39
  • [43] An Obstruction to Delaunay Triangulations in Riemannian Manifolds
    Jean-Daniel Boissonnat
    Ramsay Dyer
    Arijit Ghosh
    Nikolay Martynchuk
    Discrete & Computational Geometry, 2018, 59 : 226 - 237
  • [44] Almost Regular Delaunay-Triangulations
    Univ of Stuttgart, Stuttgart, Germany
    Int J Numer Methods Eng, 24 (4595-4610):
  • [45] Minimal Delaunay Triangulations of Hyperbolic Surfaces
    Matthijs Ebbens
    Hugo Parlier
    Gert Vegter
    Discrete & Computational Geometry, 2023, 69 : 568 - 592
  • [46] A Monotonicity Property for Weighted Delaunay Triangulations
    David Glickenstein
    Discrete & Computational Geometry, 2007, 38 : 651 - 664
  • [47] On the number of higher order Delaunay triangulations
    Mitsche, Dieter
    Saumell, Maria
    Silveira, Rodrigo I.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3589 - 3597
  • [48] Random Delaunay triangulations and metric uniformization
    Leibon, G
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (25) : 1331 - 1345
  • [49] On the Number of Higher Order Delaunay Triangulations
    Mitsche, Dieter
    Saumell, Maria
    Silveira, Rodrigo I.
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 217 - +
  • [50] GENERALIZED DELAUNAY TRIANGULATIONS OF NONCONVEX DOMAINS
    BORGERS, C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (07) : 45 - 49