Evaluation of Word Embedding via Domain Keywords

被引:0
|
作者
Fu, Qunchao [1 ,2 ]
Li, Zongyang [1 ,2 ]
Han, Xu [1 ,2 ]
Wang, Cong [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China
[2] BUPT, Minist Educ, Key Lab Trustworthy Distributed Comp & Serv, Beijing, Peoples R China
关键词
Word embedding; Intrinsic evaluations; Domain Keywords;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Word embeddings, unsupervisedly learned, have proven to he very effective and provide semantic and syntactic information in most NLP tasks. Most common intrinsic evaluations of word embeddings use the similarity of words as core. Notwithstanding, these frequently correspond inadequately with how well the word embeddings perform as features in actual downstream tasks. We present VECDS (Vector Domain Score) based on the corresponding domain keywords, like high frequency or extracted by human, in downstream evaluation tasks. The domain keywords is more important for downstream than other common vocabulary.
引用
收藏
页码:290 / 294
页数:5
相关论文
共 50 条
  • [31] Evaluation of Arabic-Based Contextualized Word Embedding Models
    Yagi, Sane Mo
    Mansour, Youssef
    Kamalov, Firuz
    Elnagar, Ashraf
    [J]. 2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 200 - 206
  • [32] A Framework for Word Embedding Based Automatic Text Summarization and Evaluation
    Hailu, Tulu Tilahun
    Yu, Junqing
    Fantaye, Tessfu Geteye
    [J]. INFORMATION, 2020, 11 (02)
  • [33] Question Classification for the Travel Domain using Deep Contextualized Word Embedding Models
    Weerakoon, Charmy
    Ranathunga, Surangika
    [J]. MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON 2021) / 7TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2021, : 573 - 578
  • [34] Detecting new Chinese words from massive domain texts with word embedding
    Qian, Yu
    Du, Yang
    Deng, Xiongwen
    Ma, Baojun
    Ye, Qiongwei
    Yuan, Hua
    [J]. JOURNAL OF INFORMATION SCIENCE, 2019, 45 (02) : 196 - 211
  • [35] The Ineffectiveness of Domain-Specific Word Embedding Models for GUI Test Reuse
    Khalili, Farideh
    Mohebbi, Ali
    Terragni, Valerio
    Pezze, Mauro
    Mariani, Leonardo
    Heydarnoori, Abbas
    [J]. 30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 560 - 564
  • [36] Aspect Extraction on Restaurant Reviews using Domain-Specific Word Embedding
    Satriamulya, Ahmad
    Romadhony, Ade
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 273 - 277
  • [37] Spatiotemporal knowledge graph completion via diachronic and transregional word embedding
    Xu, Xiaobei
    Jia, Wei
    Yan, Li
    Lu, Xiaoping
    Wang, Chao
    Ma, Zongmin
    [J]. INFORMATION SCIENCES, 2024, 667
  • [38] SenSE: A Toolkit for Semantic Change Exploration via Word Embedding Alignment
    Gruppi, Mauricio
    Adali, Sibel
    Chen, Pin-Yu
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 13170 - 13172
  • [39] Tag recommendation model using feature learning via word embedding
    Najafabadi, Maryam Khanian
    Nair, Madhavan A. L. Balan
    Mohamed, Azlinah
    [J]. 2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 305 - 309
  • [40] Enhanced Double-Carrier Word Embedding via Phonetics and Writing
    Zhu, Wenhao
    Jin, Xin
    Liu, Shuang
    Lu, Zhiguo
    Zhang, Wu
    Yan, Ke
    Wei, Baogang
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (02)