Evaluation of Word Embedding via Domain Keywords

被引:0
|
作者
Fu, Qunchao [1 ,2 ]
Li, Zongyang [1 ,2 ]
Han, Xu [1 ,2 ]
Wang, Cong [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China
[2] BUPT, Minist Educ, Key Lab Trustworthy Distributed Comp & Serv, Beijing, Peoples R China
关键词
Word embedding; Intrinsic evaluations; Domain Keywords;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Word embeddings, unsupervisedly learned, have proven to he very effective and provide semantic and syntactic information in most NLP tasks. Most common intrinsic evaluations of word embeddings use the similarity of words as core. Notwithstanding, these frequently correspond inadequately with how well the word embeddings perform as features in actual downstream tasks. We present VECDS (Vector Domain Score) based on the corresponding domain keywords, like high frequency or extracted by human, in downstream evaluation tasks. The domain keywords is more important for downstream than other common vocabulary.
引用
收藏
页码:290 / 294
页数:5
相关论文
共 50 条
  • [1] Enhancing Domain Word Embedding via Latent Semantic Imputation
    Yao, Shibo
    Yu, Dantong
    Xiao, Keli
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 557 - 565
  • [2] Lifelong Domain Word Embedding via Meta-Learning
    Xu, Hu
    Liu, Bing
    Shu, Lei
    Yu, Philip S.
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4510 - 4516
  • [3] Using word embedding to detect keywords in texts modeled as complex networks
    Tohalino, Jorge A. V.
    Silva, Thiago C.
    Amancio, Diego R.
    [J]. SCIENTOMETRICS, 2024, 129 (07) : 3599 - 3623
  • [4] Word Embedding Evaluation for Sinhala
    Lakmal, Dimuthu
    Ranathunga, Surangika
    Peramuna, Saman
    Herath, Indu
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 1874 - 1881
  • [5] Patent expanded retrieval via word embedding under composite-domain perspectives
    Fei Wang
    Tieyun Qian
    Bin Liu
    Zhiyong Peng
    [J]. Frontiers of Computer Science, 2019, 13 : 1048 - 1061
  • [6] Patent expanded retrieval via word embedding under composite-domain perspectives
    Wang, Fei
    Qian, Tieyun
    Liu, Bin
    Peng, Zhiyong
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2019, 13 (05) : 1048 - 1061
  • [7] Incorporating Domain Knowledge in Learning Word Embedding
    Roy, Arpita
    Park, Youngja
    Pan, Shimei
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1568 - 1573
  • [8] Node Embedding via Word Embedding for Network Community Discovery
    Ding, Weicong
    Lin, Christy
    Ishwar, Prakash
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2017, 3 (03): : 539 - 552
  • [9] A systematic empirical study on word embedding based methods in discovering Chinese black keywords
    Wang, Chenyang
    Shen, Yi
    Li, Yuwei
    Zhang, Min
    Hu, Miao
    Zheng, Jinghua
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [10] Persian Word Embedding Evaluation Benchmarks
    Zahedi, Mohammad Sadegh
    Bokaei, Mohammad Hadi
    Shoele, Farzaneh
    Yadollahi, Mohammad Mahdi
    Doostmohammadi, Ehsan
    Farhoodi, Mojhgan
    [J]. 26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1583 - 1588