First-Order Piezoresistive Coefficients of Lateral NMOS FETs on 4H Silicon Carbide

被引:5
|
作者
Jaeger, Richard C. [1 ]
Chen, Jun [2 ]
Suhling, Jeffrey C. [2 ]
Fursin, Leonid [3 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[3] United Silicon Carbide Inc, Monmouth Jct, NJ 08852 USA
关键词
Silicon carbide; NMOSFET; piezoresistance; mechanical stress; stress sensor; stress sensor rosette; CMOS SENSOR ARRAYS; STRESS SENSORS; COMPONENTS;
D O I
10.1109/JSEN.2019.2905787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stress dependent properties and modeling of lateral enhancement-mode NMOS FETS on 4H silicon carbide are described in detail for a wide range of bias conditions. NFET stress response is shown to include a strong threshold voltage component in addition to the expected mobility component, and a theoretical model for the stress dependencies closely matches the measured data. Values of the longitudinal and transverse piezoresistive coefficients are extracted from linear region measurements of the MOS transistors as a function of gate drive for the both crystallographic and chip coordinate systems. At low gate drive, threshold variations become much more important than the classic mobility terms, whereas high gate drive is utilized to extract the mobility terms from the data. Design of a four-transistor temperature compensated stress sensor rosette that requires a value of only one combined piezoresistive coefficient is also presented.
引用
收藏
页码:6037 / 6045
页数:9
相关论文
共 50 条
  • [31] Enhanced dopant diffusion effects in 4H silicon carbide
    Phelps, GJ
    Wright, NG
    Chester, EG
    Johnson, CM
    O'Neill, AG
    Ortolland, S
    Horsfall, AB
    Vassilevski, K
    Gwilliam, RM
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 855 - 858
  • [32] Negative-U centers in 4H silicon carbide
    Hemmingsson, CG
    Son, NT
    Ellison, A
    Zhang, J
    Janzen, E
    PHYSICAL REVIEW B, 1998, 58 (16) : 10119 - 10122
  • [33] Vanadium-related center in 4H silicon carbide
    Magnusson, B
    Wagner, M
    Son, NT
    Janzén, E
    SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 631 - 634
  • [35] Advances and challenges in 4H silicon carbide: defects and impurities
    Yang, Yanwei
    Tong, Zhouyu
    Pi, Xiaodong
    Yang, Deren
    Huang, Yuanchao
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [36] Growth of 4H silicon carbide crystals on a (112) seed
    Fadeev, A. Yu.
    Lebedev, A. O.
    Tairov, Yu. M.
    SEMICONDUCTORS, 2012, 46 (10) : 1346 - 1350
  • [37] Ionization rates and critical fields in 4H silicon carbide
    Konstantinov, AO
    Wahab, Q
    Nordell, N
    Lindefelt, U
    APPLIED PHYSICS LETTERS, 1997, 71 (01) : 90 - 92
  • [38] Piezoresistive 4H-Silicon Carbide (SiC) pressure sensor
    Mackowiak, Piotr
    Erbacher, Kolja
    Baeuscher, Manuel
    Schiffer, Michael
    Lang, Klaus-Dieter
    Schneider-Ramelow, Martin
    Ha-Duong Ngo
    2021 IEEE SENSORS, 2021,
  • [39] Spin-acoustic control of silicon vacancies in 4H silicon carbide
    Jonathan R. Dietz
    Boyang Jiang
    Aaron M. Day
    Sunil A. Bhave
    Evelyn L. Hu
    Nature Electronics, 2023, 6 : 739 - 745
  • [40] Spin-acoustic control of silicon vacancies in 4H silicon carbide
    Dietz, Jonathan R.
    Jiang, Boyang
    Day, Aaron M.
    Bhave, Sunil A.
    Hu, Evelyn L.
    NATURE ELECTRONICS, 2023, 6 (10) : 739 - 745