Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries

被引:7
|
作者
Astrova, E. V. [1 ]
Li, G. V. [1 ]
Rumyantsev, A. M. [1 ]
Zhdanov, V. V. [1 ]
机构
[1] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
SIZE-DEPENDENT FRACTURE; PERFORMANCE; LITHIATION; NANOWIRES; STABILITY; INSERTION;
D O I
10.1134/S1063782616020032
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to similar to 1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 50 条
  • [21] Ambidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries
    Kim, Junho
    Park, You Kyung
    Kim, Hansu
    Jung, In Hwan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 5791 - 5798
  • [22] Carbon scaffold structured silicon anodes for lithium-ion batteries
    Guo, Juchen
    Chen, Xilin
    Wang, Chunsheng
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) : 5035 - 5040
  • [23] Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries
    Lee, Pui-Kit
    Tahmasebi, Mohammad H.
    Ran, Sijia
    Boles, Steven T.
    Yu, Denis Y. W.
    SMALL, 2018, 14 (41)
  • [24] Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder
    Astrova, E. V.
    Voronkov, V. B.
    Rumyantsev, A. M.
    Nashchekin, A. V.
    Parfen'eva, A. V.
    Lozhkina, D. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2019, 55 (03) : 184 - 193
  • [25] Challenges and prospects of nanosized silicon anodes in lithium-ion batteries
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    NANOTECHNOLOGY, 2021, 32 (04)
  • [26] Assessing the Electrochemical Performance of Different Nanostructured CeO2 Samples as Anodes for Lithium-Ion Batteries
    Lamara, Farah
    Bounar, Nedjemeddine
    Solsona, Benjamin
    Llopis, Francisco J.
    Pilar Pico, Maria
    Alonso-Dominguez, Daniel
    Luisa Lopez, Maria
    Alvarez-Serrano, Inmaculada
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [27] Electrochemical Amorphization As a Method to Increase the Rate Capability of Crystalline Silicon Anodes for Lithium-Ion Batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (11) : 1131 - 1135
  • [28] Electrochemical Amorphization As a Method to Increase the Rate Capability of Crystalline Silicon Anodes for Lithium-Ion Batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    Technical Physics Letters, 2019, 45 : 1131 - 1135
  • [29] Enhancing electrochemical properties of silicon-graphite anodes by the introduction of cobalt for lithium-ion batteries
    Zhang, Jing
    Liang, Yunhui
    Zhou, Qian
    Peng, Yi
    Yang, Huabin
    JOURNAL OF POWER SOURCES, 2015, 290 : 71 - 79
  • [30] Stable Silicon Anodes for Lithium-Ion Batteries Using Mesoporous Metallurgical Silicon
    Li, Xiaopeng
    Yan, Chenglin
    Wang, Junna
    Graff, Andreas
    Schweizer, Stefan L.
    Sprafke, Alexander
    Schmidt, Oliver G.
    Wehrspohn, Ralf B.
    ADVANCED ENERGY MATERIALS, 2015, 5 (04)