Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer

被引:3
|
作者
Mukherjee, Atreyo [1 ]
Kannan, Haripriya [2 ]
Ho, Le Thanh Triet [1 ]
Han, Zhihang [1 ]
Stavro, Jann [3 ]
Howansky, Adrian [3 ]
Nooman, Neha [1 ]
Kisslinger, Kim [4 ]
Leveille, Sebastien [5 ]
Kizilkaya, Orhan [6 ]
Liu, Xiangyu [2 ]
Molnas, Havard [2 ]
Paul, Shlok Joseph [2 ]
Sung, Dong Hyun [2 ]
Riedo, Elisa [2 ]
Rumaiz, Abdul [7 ]
Vasileska, Dragica [8 ]
Zhao, Wei [3 ]
Sahu, Ayaskanta [2 ]
Goldan, Amir H. [3 ]
机构
[1] SUNY Stony Brook, Coll Engn & Appl Sci, Dept Elect Engn, Stony Brook, NY 11794 USA
[2] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, Brooklyn, NY 10012 USA
[3] SUNY Stony Brook, Sch Med, Dept Radiol, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[5] Anal Canada, Montreal, PQ H4R 2P1, Canada
[6] Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70803 USA
[7] Brookhaven Natl Lab, Natl Synchrotron Light Source Ii, Upton, NY 11973 USA
[8] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
ACS PHOTONICS | 2022年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
cadmium selenide quantum dots; colloidal quantum dot photodetectors; vertical-stack photodetectors; amorphous hole transport layer; avalanche transport layer; avalanche photodiodes; LIGHT-EMITTING DEVICES; HIGH-DETECTIVITY; EFFICIENCY; FABRICATION; ENERGY; SIZE; TIME;
D O I
10.1021/acsphotonics.2c01353
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dots (CQDs) provide wide spectral tunability and high absorption coefficients owing to quantum confinement and large oscillator strengths, which along with solution processability, allow a facile, low-cost, and room temperature deposition technique for the fabrication of photonic devices. However, many solution-processed CQD photodetector devices demonstrate low specific-detectivity and slow temporal response. To achieve improved photodetector characteristics, limiting carrier recombination and enhancing photogenerated carrier separation are crucial. In this study, we develop and present an alternate vertical-stack photodetector wherein we use a solution-processed quantum dot photoconversion layer coupled to an amorphous selenium (a-Se) wide-bandgap charge transport layer that is capable of exhibiting single-carrier hole impact ionization and is compatible with active-matrix readout circuitry. This a-Se chalcogenide transport layer enables the fabrication of highperformance and reliable solution-processed quantum dot photodetectors, with enhanced charge extraction capabilities, high specific detectivity (D* 0.5-5 x 1012 Jones), fast 3 dB electrical bandwidth (3 dB BW 22 MHz), low dark current density (JD 5-10 pA/cm2), low noise current (in 20-25 fW/Hz1/2), and high linear dynamic range (LDR 130-150 dB) across the measured visible electromagnetic spectrum ( 405-656 nm).
引用
收藏
页码:134 / 146
页数:13
相关论文
共 50 条
  • [31] Rational Doping Strategy to Build the First Solution-Processed p-n Homojunction Architecture toward Silicon Quantum Dot Photodetectors
    Ghosh, Batu
    Yamada, Hiroyuki
    Nemoto, Kazuhiro
    Jevasuwan, Wipakorn
    Fukata, Naoki
    Sun, Hon-Tao
    Shirahata, Naoto
    SMALL SCIENCE, 2024, 4 (12):
  • [32] Solution-processed colloidal quantum dot photovoltaics: A perspective
    Debnath, Ratan
    Bakr, Osman
    Sargent, Edward H.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) : 4870 - 4881
  • [33] Inorganic ZnTe Hole Transport Layer for PbS Quantum Dot Infrared Photodetectors and Imagers
    Wang, Ya
    Liu, Jing
    Ran, Xi
    Lu, Haolin
    Liu, Jing
    Yang, Junrui
    Xia, Hang
    Zhang, Xingchen
    Zhang, Jianbing
    Gao, Liang
    Long, Guankui
    Hu, Huicheng
    Tang, Jiang
    Lan, Xinzheng
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [34] Low-temperature solution-processed MoOx as hole injection layer for efficient quantum dot light-emitting diodes
    Li, Jingling
    Guo, Qiling
    Jin, Hu
    Wang, Kelai
    Xu, Dehua
    Xu, Gang
    Xu, Xueqing
    RSC ADVANCES, 2017, 7 (44): : 27464 - 27472
  • [35] Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells
    Yan-Fu Liu
    Si-Wen Zhang
    Yan-Xun Li
    Shi-Lin Li
    Li-Qing Huang
    Ya-Nan Jing
    Qian Cheng
    Lin-Ge Xiao
    Bo-Xin Wang
    Bing Han
    Jia-Jie Kang
    Yuan Zhang
    Hong Zhang
    Hui-Qiong Zhou
    Chinese Journal of Polymer Science, 2023, 41 (02) : 202 - 211
  • [36] Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells
    Liu, Yan-Fu
    Zhang, Si-Wen
    Li, Yan-Xun
    Li, Shi-Lin
    Huang, Li-Qing
    Jing, Ya-Nan
    Cheng, Qian
    Xiao, Lin-Ge
    Wang, Bo-Xin
    Han, Bing
    Kang, Jia-Jie
    Zhang, Yuan
    Zhang, Hong
    Zhou, Hui-Qiong
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (02) : 202 - 211
  • [37] Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells
    Yan-Fu Liu
    Si-Wen Zhang
    Yan-Xun Li
    Shi-Lin Li
    Li-Qing Huang
    Ya-Nan Jing
    Qian Cheng
    Lin-Ge Xiao
    Bo-Xin Wang
    Bing Han
    Jia-Jie Kang
    Yuan Zhang
    Hong Zhang
    Hui-Qiong Zhou
    Chinese Journal of Polymer Science, 2023, 41 : 202 - 211
  • [38] Solution-processed silicon quantum dot photocathode for hydrogen evolution
    Takada, Miho
    Inoue, Kosuke
    Sugimoto, Hiroshi
    Fujii, Minoru
    NANOTECHNOLOGY, 2021, 32 (48)
  • [39] Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer
    Hu, Long
    Wang, Yutao
    Shivarudraiah, Sunil B.
    Yuan, Jianyu
    Guan, Xinwei
    Geng, Xun
    Younis, Adnan
    Hu, Yicong
    Huang, Shujuan
    Wu, Tom
    Halpert, Jonathan E.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 2313 - 2318
  • [40] Colloidal quantum dot solids for solution-processed solar cells
    Yuan, Mingjian
    Liu, Mengxia
    Sargent, Edward H.
    NATURE ENERGY, 2016, 1