Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater

被引:13
|
作者
Lokutsievskiy, L., V [1 ]
Sachkov, Yu L. [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Russian Acad Sci, Program Syst Inst, Pereslavl Dist, Yaroslavl Oblas, Russia
基金
俄罗斯科学基金会;
关键词
sub-Riemannian geometry; Liouville integrability; Carnot groups; growth vector; separatrix splitting; Melnikov-Poincare method; GENERALIZED DIDO PROBLEM; EQUATIONS; INTEGRALS; GEOMETRY; SYSTEMS; SPACE;
D O I
10.1070/SM8886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the main approaches to investigating sub-Riemannian problems is Mitchell's theorem on nilpotent approximation, which reduces the analysis of a neighbourhood of a regular point to the analysis of the left-invariant sub-Riemannian problem on the corresponding Carnot group. Usually, the in-depth investigation of sub-Riemannian shortest paths is based on integrating the Hamiltonian system of Pontryagin's maximum principle explicitly. We give new formulae for sub-Riemannian geodesics on a Carnot group with growth vector (2, 3, 5, 6) and prove that left-invariant sub-Riemannian problems on free Carnot groups of step 4 or greater are Liouville nonintegrable.
引用
收藏
页码:672 / 713
页数:42
相关论文
共 50 条
  • [1] Liouville Nonintegrability of Sub-Riemannian Problems on Free Carnot Groups of Step 4
    Lokutsievskiy, L. V.
    Sachkov, Yu. L.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (03) : 211 - 213
  • [2] Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4
    L. V. Lokutsievskii
    Yu. L. Sachkov
    [J]. Doklady Mathematics, 2017, 95 : 211 - 213
  • [3] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [4] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Ivan A. Bizyaev
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    [J]. Regular and Chaotic Dynamics, 2016, 21 : 759 - 774
  • [5] Polynomial sub-Riemannian differentiability on Carnot groups
    M. B. Karmanova
    [J]. Doklady Mathematics, 2016, 94 : 663 - 666
  • [6] Polynomial sub-Riemannian differentiability on Carnot groups
    Karmanova, M. B.
    [J]. DOKLADY MATHEMATICS, 2016, 94 (03) : 663 - 666
  • [7] Sub-Riemannian calculus on hypersurfaces in Carnot groups
    Danielli, D.
    Garofalo, N.
    Nhieu, D. M.
    [J]. ADVANCES IN MATHEMATICS, 2007, 215 (01) : 292 - 378
  • [8] Hypersurfaces and variational formulas in sub-Riemannian Carnot groups
    Montefalcone, Francescopaolo
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (05): : 453 - 494
  • [9] The polynomial sub-Riemannian differentiability of some Holder mappings of Carnot groups
    Karmanova, M. B.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (02) : 232 - 254
  • [10] Sub-Riemannian Curvature of Carnot Groups with Rank-Two Distributions
    Isidro H. Munive
    [J]. Journal of Dynamical and Control Systems, 2017, 23 : 779 - 814