Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover

被引:6
|
作者
Sonobe, Rei [1 ]
Yamaya, Yuki [2 ]
Tani, Hiroshi [3 ]
Wang, Xiufeng [3 ]
Kobayashi, Nobuyuki [4 ]
Mochizuki, Kan-ichiro [5 ]
机构
[1] Shizuoka Univ, Fac Agr, Shizuoka, Japan
[2] Hokkaido Univ, Grad Sch Agr, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido, Japan
[4] Smart Link Hokkaido, Iwamizawa, Japan
[5] PASCO Corp, Tokyo, Japan
关键词
Crop; deep forest; Landsat; 8; random forests; reflectance; spectral indices; LEAF-AREA INDEX; VEGETATION INDEXES; OPTICAL-PROPERTIES; SOIL; REFLECTANCE; CANOPY; MODIS; CLASSIFICATION; ASTER; INTEGRATION;
D O I
10.1080/10106049.2018.1425739
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification.
引用
收藏
页码:839 / 855
页数:17
相关论文
共 50 条
  • [31] Landsat 8 OLI TIRS Imagery Ability for Monitoring Post Forest Fire Changes
    Arisanty, Deasy
    Adyatma, Sidharta
    Muhaimin, Muhammad
    Nursaputra, Aswin
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2019, 27 (03): : 1105 - 1120
  • [32] Assessing methods of identifying open water bodies using Landsat 8 OLI imagery
    Liu, Zhaofei
    Yao, Zhijun
    Wang, Rui
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (10)
  • [33] An adaptive spectral index for carbonate rocks using OLI Landsat-8 imagery
    Sales, V. F.
    Zanotta, D. C.
    Marques Jr, A.
    Racolte, G.
    Muller, M.
    Cazarin, C. L.
    Ibanez, D.
    Gonzaga Jr, L.
    Veronez, M. R.
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [34] Monitoring Plastic-Mulched Farmland Using Landsat-8 OLI Imagery
    Hasituya
    Chen Zhong-xin
    Wu Wen-bin
    Qing Huang
    2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
  • [35] RELATIONSHIP BETWEEN COFFEE CROP PRODUCTIVITY AND VEGETATION INDEXES DERIVED FROM OLI / LANDSAT-8 SENSOR DATA WITH AND WITHOUT TOPOGRAPHIC CORRECTION
    Nogueira, Sulimar M. C.
    Moreira, Mauricio A.
    Volpato, Margarete M. L.
    ENGENHARIA AGRICOLA, 2018, 38 (03): : 387 - 394
  • [36] Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification
    Yu, Zhiqi
    Di, Liping
    Yang, Ruixing
    Tang, Junmei
    Lin, Li
    Zhang, Chen
    Rahman, Md. Shahinoor
    Zhao, Haoteng
    Gaigalas, Juozas
    Yu, Eugene Genong
    Sun, Ziheng
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [37] Decomposition of Landsat 8 OLI Images by Simplified Spectral Patterns for Land Cover Mapping
    Nguyen Dinh Duong
    2018 10TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS), 2018,
  • [38] Automated Subpixel Surface Water Mapping from Heterogeneous Urban Environments Using Landsat 8 OLI Imagery
    Xie, Huan
    Luo, Xin
    Xu, Xiong
    Pan, Haiyan
    Tong, Xiaohua
    REMOTE SENSING, 2016, 8 (07):
  • [39] Phenological metrics-based crop classification using HJ-1 CCD images and Landsat 8 imagery
    Zhang, Xiaochun
    Xiong, Qinxue
    Di, Liping
    Tang, Junmei
    Yang, Jin
    Wu, Huayi
    Qin, Yan
    Su, Rongrui
    Zhou, Wei
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2018, 11 (12) : 1219 - 1240
  • [40] Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
    Potapov, Peter
    Hansen, Matthew C.
    Stehman, Stephen V.
    Loveland, Thomas R.
    Pittman, Kyle
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (09) : 3708 - 3719