Unextendible product basis for fermionic systems

被引:13
|
作者
Chen, Jianxin [1 ,2 ,3 ]
Chen, Lin [2 ,4 ,5 ]
Zeng, Bei [1 ,2 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Chinese Acad Sci, Acad Math & Syst Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Beijing 100190, Peoples R China
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[5] Singapore Univ Technol & Design, Singapore 138682, Singapore
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
ENTANGLED SUBSPACE; BASES;
D O I
10.1063/1.4893358
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the concept of unextendible product basis (UPB) and generalized UPB for fermionic systems, using Slater determinants as an analogue of product states, in the anti-symmetric subspace. Lambda C-N(M). We construct an explicit example of generalized fermionic unextendible product basis (FUPB) with minimum cardinality N(M-N) + 1 for any N >= 2, M >= 4. We also show that any bipartite anti-symmetric space. Lambda C-2(M) of codimension two is spanned by Slater determinants, and the spaces of higher codimension may not be spanned by Slater determinants. Furthermore, we construct an example of complex FUPB of N = 2, M = 4 with minimum cardinality 5. In contrast, we show that a real FUPB does not exist for N = 2, M = 4. Finally, we provide a systematic construction for FUPBs of higher dimensions by using FUPBs and UPBs of lower dimensions. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Reflection Relations and Fermionic Basis
    Negro, S.
    Smirnov, F.
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (12) : 1293 - 1311
  • [32] Reflection Relations and Fermionic Basis
    S. Negro
    F. Smirnov
    Letters in Mathematical Physics, 2013, 103 : 1293 - 1311
  • [33] Characterizing unextendible product bases in qutrit-ququad system
    Yang, Ying-Hui
    Gao, Fei
    Xu, Guang-Bao
    Zuo, Hui-Juan
    Zhang, Zhi-Chao
    Wen, Qiao-Yan
    SCIENTIFIC REPORTS, 2015, 5
  • [34] Unextendible Product Bases and Locally Unconvertible Bound Entangled States
    S. B. Bravyi
    Quantum Information Processing, 2004, 3 : 309 - 329
  • [35] A NOTE ON LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chen, Bin
    Nizamidin, Halqem
    Fei, Shao-Ming
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (11-12) : 1077 - 1080
  • [36] Unextendible product bases, bound entangled states, and the range criterion
    Bej, Pratapaditya
    Halder, Saronath
    PHYSICS LETTERS A, 2021, 386
  • [37] Unextendible Product Bases and Locally Unconvertible Bound Entangled States
    Bravyi, S. B.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (06) : 309 - 329
  • [38] Characterizing unextendible product bases in qutrit-ququad system
    Ying-Hui Yang
    Fei Gao
    Guang-Bao Xu
    Hui-Juan Zuo
    Zhi-Chao Zhang
    Qiao-Yan Wen
    Scientific Reports, 5
  • [39] The construction and weakly local indistinguishability of multiqubit unextendible product bases
    Sun, Yize
    Wang, Baoshan
    QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
  • [40] Constructing the three-qudit unextendible product bases with strong nonlocality
    车碧琛
    窦钊
    陈秀波
    杨榆
    李剑
    杨义先
    Chinese Physics B, 2022, (06) : 206 - 218