Digit frequencies and Bernoulli convolutions

被引:0
|
作者
Kempton, Tom [1 ]
机构
[1] Univ St Andrews, Dept Math, St Andrews KY16 9SS, Fife, Scotland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Bernoulli convolutions; Beta-expansions; Ergodic theory; MULTIFRACTAL ANALYSIS; NUMERATION; ENTROPY; REPRESENTATIONS; NUMBERS;
D O I
10.1016/j.indag.2014.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that when beta is a Pisot number, the corresponding Bernoulli convolution v(beta) has Hausdorff dimension less than 1, i.e. that there exists a set A(beta) with v(beta)(A(beta)) = 1 and dim(H) (A(beta)) < 1. We show explicitly how to construct for each Pisot number beta such a set A beta. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V.. All rights reserved.
引用
下载
收藏
页码:832 / 842
页数:11
相关论文
共 50 条
  • [1] Spectra of Bernoulli convolutions and random convolutions
    Fu, Yan-Song
    He, Xing-Gang
    Wen, Zhi-Xiong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 105 - 131
  • [2] On symmetric Bernoulli convolutions
    Kawata, T
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 792 - 794
  • [3] Notes on Bernoulli convolutions
    Solomyak, B
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 207 - 230
  • [4] ON THE DIMENSION OF BERNOULLI CONVOLUTIONS
    Breuillard, Emmanuel
    Varju, Peter P.
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2582 - 2617
  • [5] On symmetric Bernoulli convolutions
    Kershner, R
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 541 - 548
  • [6] On random Bernoulli convolutions
    Persson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 203 - 213
  • [7] On the Hausdorff Dimension of Bernoulli Convolutions
    Akiyama, Shigeki
    Feng, De-Jun
    Kempton, Tom
    Persson, Tomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) : 6569 - 6595
  • [8] Spectrality of infinite Bernoulli convolutions
    An, Li-Xiang
    He, Xing-Gang
    Li, Hai-Xiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) : 1571 - 1590
  • [9] BERNOULLI CONVOLUTIONS AND DIFFERENTIABLE FUNCTIONS
    KAUFMAN, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 217 (MAR) : 99 - 104
  • [10] Multifractal structure of Bernoulli convolutions
    Jordan, Thomas
    Shmerkin, Pablo
    Solomyak, Boris
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 : 521 - 539