Gabor-type filtering using transient states of cellular neural networks

被引:4
|
作者
Morie, T [1 ]
Umezawa, J
Iwata, A
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka 8080196, Japan
[2] Hiroshima Univ, Grad Sch Adv Sci Matter, Higashihiroshima 7398526, Japan
来源
INTELLIGENT AUTOMATION AND SOFT COMPUTING | 2004年 / 10卷 / 02期
关键词
Gabor filter; cellular neural networks; transient states;
D O I
10.1080/10798587.2004.10642868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gabor filtering is useful for intelligent image processing, but it requires huge computational power. Its pixel-parallel LSI implementation is one solution for real-time image processing. This paper proposes a new Gabor filtering algorithm using a discrete-time cellular neural network (CNN) circuit, which is suitable for pixel-parallel LSI implementation. The proposed algorithm utilizes transient states of the CNN to obtain Gabor coefficients, and it has the following advantages: (I) the amplitudes of all coefficients of the terms in the dynamics equations are on the same order; (2) the relative amplitudes of Gabor coefficients can arbitrarily be controlled. and (3) the number of calculation steps required for obtaining Gabor coefficients can be reduced compared with the algorithm using the steady state; (4) the window function of the filter is nearly Gaussian.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 50 条
  • [41] No reference image quality assessment using gabor convolutional neural networks
    Vadlamudi, Jyothisri
    Khan, Sameeulla
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [42] Generalized approach to matched filtering using neural networks
    Yan, Jingkai
    Avagyan, Mariam
    Colgan, Robert E.
    Veske, Doga
    Bartos, Imre
    Wright, John
    Marka, Zsuzsa
    Marka, Szabolcs
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [43] Adaptive come-filtering using neural networks
    Horn, J
    Jansen, M
    Prange, SJ
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1997, 43 (03) : 833 - 836
  • [44] Adaptive comb-filtering using neural networks
    Prange, SJ
    Jansen, M
    Horn, J
    INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 1997 DIGEST OF TECHNICAL PAPERS, 1997, : 406 - 407
  • [45] Filtering and differentiating noisy signals using neural networks
    Schmidt, M
    Nelles, O
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 2730 - 2731
  • [46] Anti-spam filtering using neural networks
    Elfayoumy, S
    Yang, Y
    Ahuja, S
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 984 - 989
  • [47] FUNNEL: Filtering Using Neural Networks for Exactness and Leanness
    Draganov, Alexandr
    PROCEEDINGS OF THE 2017 INTERNATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION, 2017, : 1189 - 1195
  • [48] Collaborative filtering based on neural networks using similarity
    Kim, E
    Kim, M
    Ryu, J
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 355 - 360
  • [49] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    Personal and Ubiquitous Computing, 2018, 22 : 1029 - 1037
  • [50] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    PERSONAL AND UBIQUITOUS COMPUTING, 2018, 22 (5-6) : 1029 - 1037