Degradable, silyl ether thiol-ene networks

被引:24
|
作者
Ware, Taylor [1 ]
Jennings, Abby R. [2 ]
Bassampour, Zahra S. [2 ]
Simon, Dustin [1 ]
Son, David Y. [2 ]
Voit, Walter [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[2] So Methodist Univ, Ctr Drug Discovery Design & Delivery CD4, Dept Chem, Dallas, TX 75275 USA
来源
RSC ADVANCES | 2014年 / 4卷 / 75期
关键词
MICROELECTRODES; POLYMERS; SYSTEMS;
D O I
10.1039/c4ra06997h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A system of multifunctional silyl ether containing alkene and thiol monomers are synthesized and polymerized into uniform degradable networks with widely tunable thermomechanical properties. The glass transition temperature of the hydrolytically unstable networks can be controlled between -60 degrees C and 40 degrees C. Near total degradation is observed and the rate of degradation is controlled to occur between hours and months. Dynamic mechanical analysis, mass loss, uniaxial compression testing, multinuclear NMR spectroscopy, and gas chromatography-mass spectrometry are utilized to characterize the degradation of these networks. Importantly, this system of materials allows for rapid hydrolytic degradation that is not preceded by swelling. These degradable polymers are demonstrated to be compatible with microfabrication techniques, namely photolithography. As a demonstration, partially biodegradable cortical electrodes were fabricated and electrochemically characterized on silyl ether substrates.
引用
收藏
页码:39991 / 40002
页数:12
相关论文
共 50 条
  • [31] Degradable emulsion-templated scaffolds for tissue engineering from thiol-ene photopolymerisation
    Caldwell, Sally
    Johnson, David W.
    Didsbury, Matthew P.
    Murray, Bridgid A.
    Wu, Jun Jie
    Przyborski, Stefan A.
    Cameron, Neil R.
    SOFT MATTER, 2012, 8 (40) : 10344 - 10351
  • [32] Elastomeric and degradable polyanhydride network polymers by step-growth thiol-ene photopolymerization
    Shipp, Devon A.
    McQuinn, Christopher W.
    Rutherglen, Broden G.
    McBath, Ryan A.
    CHEMICAL COMMUNICATIONS, 2009, (42) : 6415 - 6417
  • [33] The Power of Thiol-ene Chemistry
    Kade, Matthew J.
    Burke, Daniel J.
    Hawker, Craig J.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48 (04) : 743 - 750
  • [34] Thiol-Ene Click Chemistry
    Xu Yuanhong
    Xiong Xingquan
    Cai Lei
    Tang Zhongke
    Ye Zhangji
    PROGRESS IN CHEMISTRY, 2012, 24 (2-3) : 385 - 394
  • [35] Thiol-ene chemistry of vinylsilanes
    Rissing, Christiana
    Son, David Y.
    MAIN GROUP CHEMISTRY, 2009, 8 (04) : 251 - 262
  • [36] Thiol-Ene Clickable Polypeptides
    Sun, Jing
    Schlaad, Helmut
    MACROMOLECULES, 2010, 43 (10) : 4445 - 4448
  • [37] Laser-Triggered Writing and Biofunctionalization of Thiol-Ene Networks
    Romano, Angelo
    Angelini, Angelo
    Rossegger, Elisabeth
    Palmara, Gianluca
    Castellino, Micaela
    Frascella, Francesca
    Chiappone, Annalisa
    Chiado, Alessandro
    Sangermano, Marco
    Schlogl, Sandra
    Roppolo, Ignazio
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (10)
  • [38] Quinic acid-based degradable poly(thioether-co-carbonate) networks via thiol-ene crosslinking
    Link, Lauren A.
    Lonnecker, Alexander T.
    Hearon, Ketih
    Raymond, Jeffery E.
    Maitland, Duncan J.
    Wooley, Karen L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [39] Thiol-Ene Click Chemistry
    Hoyle, Charles E.
    Bowman, Christopher N.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (09) : 1540 - 1573
  • [40] Biobased Transparent Thiol-Ene Polymer Networks from Levoglucosan
    Stanfield, Melissa K.
    Kotlarewski, Nathan
    Smith, Jason
    Thickett, Stuart C.
    ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 837 - 845