Cherenkov radiation emitted by Kuznetsov-Ma solitons

被引:0
|
作者
Zheng, Yidan [1 ]
Liu, Chong [1 ,2 ,3 ]
机构
[1] Northwest Univ, Sch Phys, Xian, Peoples R China
[2] Shaanxi Key Lab Theoret Phys Frontiers, Xian, Peoples R China
[3] NSFC SPTP Peng Huanwu Ctr Fundamental Theory, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
kuznetsov-ma soliton; cherenkov radiation; higher-order dispersion; radiation properties; propagation constant; PHOTONIC CHIP; INSTABILITY; WAVES;
D O I
10.3389/fphy.2022.1043168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cherenkov radiation emitted by Kuznetsov-Ma soliton (KMS) with an arbitrary propagation constant in the presence of higher-order dispersions is studied analytically and numerically. We show that the third-order dispersion (TOD) yields asymmetric radiated bands, while the fourth-order dispersion (FOD) gives rise to symmetric radiated bands only when the value of FOD is positive. In contrast to radiations emitted by other localized waves, such a radiation emerges periodically in propagation, and can exhibit multi-frequency bands which depends strongly on the propagation constant of the KMS. We presented radiation conditions to calculate different frequency bands, which shows great agreement with numerical simulations. Important radiation features such as radiation frequencies, velocities, and distances are shown in phase diagrams. Our results could be helpful for controllable radiations in nonlinear fiber and other nonlinear systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Kuznetsov-Ma breather-like solutions in the Salerno model
    Sullivan, J.
    Charalampidis, E. G.
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Karachalios, N., I
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [22] Kuznetsov-Ma rogue wave clusters of the nonlinear Schrodinger equation
    Alwashahi, Sarah
    Aleksic, Najdan B.
    Belic, Milivoj R.
    Nikolic, Stanko N.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12495 - 12509
  • [23] Ultraslow Kuznetsov-Ma solitons and Ahkmediev breathers in a cold three-state medium exposed to nanosecond optical pulses
    Wang, Wanwan
    Bu, Lili
    Cheng, Dandan
    Ye, Yanlin
    Chen, Shihua
    Baronio, Fabio
    OSA CONTINUUM, 2021, 4 (05): : 1488 - 1496
  • [24] Kuznetsov-Ma waves train generation in a left-handed material
    Atangana, Jacques
    Essama, Bedel Giscard Onana
    Biya-Motto, Frederick
    Mokhtari, Bouchra
    Eddeqaqi, Noureddine Cherkaoui
    Kofane, Timoleon Crepin
    JOURNAL OF MODERN OPTICS, 2015, 62 (05) : 392 - 402
  • [25] Kuznetsov-Ma Breather in Two-Temperature-Ion Dusty Plasma
    Ding, Fei-Yun
    Chen, Yu-Xi
    Li, Fei-Fei
    Duan, Wen-Shan
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, : 5266 - 5271
  • [26] Stabilization of the Peregrine soliton and Kuznetsov-Ma breathers by means of nonlinearity and dispersion management
    Cuevas-Maraver, J.
    Malomed, Boris A.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    PHYSICS LETTERS A, 2018, 382 (14) : 968 - 972
  • [27] Periodic modulations controlling Kuznetsov-Ma soliton formation in nonlinear Schrodinger equations
    Tiofack, C. G. L.
    Coulibaly, S.
    Taki, M.
    De Bievre, S.
    Dujardin, G.
    PHYSICS LETTERS A, 2017, 381 (24) : 1999 - 2003
  • [28] Modulational instability of the Kuznetsov-Ma breather in optical fibers with constant and periodic dispersion
    Al Khawaja, U.
    Al-Marzoug, S. M.
    Bahlouli, H.
    Abdullaev, F. Kh.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 : 1 - 9
  • [29] Kuznetsov-Ma soliton and Akhmediev breather of higher-order nonlinear Schrodinger equation
    Li, Zai-Dong
    Wu, Xuan
    Li, Qiu-Yan
    He, P. B.
    CHINESE PHYSICS B, 2016, 25 (01)
  • [30] Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Karachalios, N. I.
    Haragus, M.
    James, G.
    PHYSICAL REVIEW E, 2017, 96 (01)