Blind Estimation of Affine Transformation Using 2-D Cyclostationarity of Resampled Images

被引:0
|
作者
Ou, Junhai [1 ]
Ni, Jiangqun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
来源
MIPPR 2015: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS | 2015年 / 9811卷
关键词
Image forensics; resampling detection; affine transformation estimation; 2-D Cyclostationarity;
D O I
10.1117/12.2205468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a unified way to estimate the parameters of affine transformation in the absence of original image. With 2-D cyclostationary characterization, we analytically show that the covariance of affine transformed image is periodic with the affine transformation matrix. Based on the relationship between the affine transformation matrix and the position of resampling-caused striking peaks in the 2-D spectrum of the image's edge map, we further study how to estimate the parameters of several typical affine transformations, e.g., the scaling factor, the rotation angle, the joint scaling and rotation transformation parameters. Examples of the output of our algorithm are shown and comparative results are presented to evaluate the performance of the proposed algorithm.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Affine-permutation invariance of 2-D shapes
    Ha, VHS
    Moura, JMF
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1687 - 1700
  • [22] 2-D covariant affine integral quantization(s)
    Gazeau, Jean-Pierre
    Koide, Tomoi
    Murenzi, Romain
    ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 901 - 935
  • [23] 2-D affine generalized fractional Fourier transform
    Ding, JJ
    Pei, SC
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3181 - 3184
  • [24] 2-D covariant affine integral quantization(s)
    Jean-Pierre Gazeau
    Tomoi Koide
    Romain Murenzi
    Advances in Operator Theory, 2020, 5 : 901 - 935
  • [25] 2-D affine generalized fractional Fourier transform
    Ding, Jian-Jiun
    Pei, Soo-Chang
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 6 : 3181 - 3184
  • [26] Blind DOA estimation using higher order cyclostationarity and linear prediction in multipath environment
    Lu, HJ
    Wang, SX
    Jiang, H
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 483 - 486
  • [27] Blind image deconvolution using a robust 2-D GCD approach
    Liang, B
    Pillai, SU
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1185 - 1188
  • [28] OPTIMAL DIGITIZATION OF 2-D IMAGES
    NIELSEN, L
    ASTROM, KJ
    JURY, EI
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (06): : 1247 - 1249
  • [29] Parametric estimation of 2-D motion field on ultrasonic images using spatially smoothed regression model and respiration
    Tagawa, N
    Ohta, K
    Minagawa, A
    Moriya, T
    Minohara, S
    2000 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2000, : 1703 - 1707
  • [30] Projective analysis of 2-D images
    Dibos, F
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 274 - 279