INEQUALITIES OF CHEBYSHEV-POLYA-SZEGO TYPE VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS

被引:4
|
作者
Butt, Saad Ihsan [1 ]
Akdemir, Ahmet Ocak [2 ]
Ekinci, Alper [3 ]
Nadeem, Muhammad [1 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Ibrahim Cecen Univ Agri, Fac Sci & Letters, Dept Math, Agri, Turkey
[3] Bandirma Onyedi Eylul Univ, Dept Foreign Trade, Bandirma Vocat High Sch, Balikesir, Turkey
关键词
Chebyshev inequality; Polya-Szego type inequalities; GPF Polya-Szego operator; DERIVATIVES; EQUATIONS;
D O I
10.18514/MMN.2020.3363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study is an example of a solid connection between fractional analysis and inequality theory, and includes new inequalities of the Polya-Szego-Chebyshev type obtained with the help of Generalized Proportional Fractional integral operators. The results have been performed by using Generalized Proportional Fractional integral operators, some classical inequalities such as AM-GM inequality, Cauchy-Schwarz inequality and Taylor series expansion of exponential function. The findings give new approaches to some types of inequalities that have involving the product of two functions in inequality theory.
引用
收藏
页码:717 / 732
页数:16
相关论文
共 50 条
  • [21] Minkowski-Type Inequalities Using Generalized Proportional Hadamard Fractional Integral Operators
    Nale, Asha B.
    Panchal, Satish K.
    Chinchane, Vaijanath L.
    FILOMAT, 2021, 35 (09) : 2973 - 2984
  • [22] Gruss-type integrals inequalities via generalized proportional fractional operators
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [23] Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators
    Baleanu, D.
    Purohit, S. D.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [24] POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Mehmood, Sajid
    Pecaric, Josip
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1365 - 1377
  • [25] Some new integral inequalities associated with generalized proportional fractional operators
    Set, Erhan
    Celik, Baris
    Alan, Emrullah Aykan
    Akdemir, Ahmet Ocak
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1149 - 1161
  • [26] On Polya-Szego Type Inequalities via K-Fractional Conformable Integrals
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Safdar, Farhat
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (05): : 63 - 76
  • [27] Grüss-type integrals inequalities via generalized proportional fractional operators
    Saima Rashid
    Fahd Jarad
    Muhammad Aslam Noor
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [28] On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities
    Vivas-Cortez, Miguel
    Mohammed, Pshtiwan O.
    Hamed, Y. S.
    Kashuri, Artion
    Hernandez, Jorge E.
    Macias-Diaz, Jorge E.
    AIMS MATHEMATICS, 2022, 7 (06): : 10256 - 10275
  • [29] Some New Tempered Fractional Polya-Szego and Chebyshev-Type Inequalities with Respect to Another Function
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [30] UNIVARIATE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITIES
    Anastassiou, George A.
    MATEMATICKI VESNIK, 2014, 66 (04): : 387 - 396