Facile Preparation of Ultrathin Co3O4/Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst

被引:54
|
作者
Chen, Yanyan [1 ]
Hu, Jun [1 ]
Diao, Honglin [1 ]
Luo, Wenjing [1 ]
Song, Yu-Fei [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
关键词
electrochemistry; nanocomposite; oxygen evolution reaction; reduced graphene oxide; ultrathin Co3O4; LITHIUM-ION BATTERIES; GRAPHENE OXIDE; WATER OXIDATION; CO3O4; NANOCRYSTALS; HIGH-PERFORMANCE; ELECTROCATALYSTS; NANOSHEETS; REDUCTION; NANOPARTICLES; PHOTOANODES;
D O I
10.1002/chem.201700225
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The efficient catalytic oxidation of water to dioxygen plays a significant role in solar fuel and artificial photosynthetic systems. It remains highly challenging to develop oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions. Here, a new composite material is reported based on ultrathin 2D Co3O4 nanosheets and reduced graphene oxides (rGO) by means of a one-pot hydrothermal strategy. The ultrathin Co3O4/rGO nanocomposite shows superior stability under alkaline conditions and exhibits an overpotential of 290mV with a Tafel slope of 68mAdec(-1), which is much smaller than that of bare Co3O4 catalyst. Extensive experiments were also carried out using 0D CS and 1D CNTs (CS=carbon spheres, CNTs=carbon nanotubes) in place of the 2D rGO. The overpotentials of as-prepared nanocomposites decrease with the increase of the dimension of nanocarbons, suggesting the electrochemistry activity is closely related to the surface area of carbon substrates. In addition, compared with ultrathin 2D Co3O4 nanosheets with a Co2+/Co3+ ratio of 1.2, the as-prepared ultrathin Co3O4/rGO nanocomposite with a Co2+/Co3+ ratio of 1.4 contributes to the better OER performance as more oxygen vacancies can be formed in the ultrathin Co3O4/rGO nanocomposite under the experimental conditions. Compared with other Co3O4-containing composite materials reported so far, the ultrathin Co3O4/rGO nanocomposites show excellent OER performance.
引用
收藏
页码:4010 / 4016
页数:7
相关论文
共 50 条
  • [41] Effect of the Size and Shape on the Electrocatalytic Activity of Co3O4 Nanoparticles in the Oxygen Evolution Reaction
    Saddeler, S.
    Hagemann, U.
    Schulz, S.
    INORGANIC CHEMISTRY, 2020, 59 (14) : 10013 - 10024
  • [42] Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction
    Zhang, Sufeng
    Wei, Ning
    Yao, Zijie
    Zhao, Xinyu
    Du, Min
    Zhou, Qiusheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) : 5286 - 5295
  • [43] Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction
    Song, Wenqiao
    Ren, Zheng
    Chen, Sheng-Yu
    Meng, Yongtao
    Biswas, Sourav
    Nandi, Partha
    Elsen, Heather A.
    Gao, Pu-Xian
    Suib, Steven L.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20802 - 20813
  • [44] Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
    Liang, Yongye
    Li, Yanguang
    Wang, Hailiang
    Zhou, Jigang
    Wang, Jian
    Regier, Tom
    Dai, Hongjie
    NATURE MATERIALS, 2011, 10 (10) : 780 - 786
  • [45] Development of NiO/Co3O4 nanohybrids catalyst with oxygen vacancy for oxygen evolution reaction enhancement in alkaline solution
    Nam, Dukhyun
    Kim, Jooheon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (38) : 16900 - 16907
  • [46] Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
    Yongye Liang
    Yanguang Li
    Hailiang Wang
    Jigang Zhou
    Jian Wang
    Tom Regier
    Hongjie Dai
    Nature Materials, 2011, 10 : 780 - 786
  • [47] Synthesis and characterization of Co3O4/Ti3C2 MXene nanocomposite: efficient catalyst for oxygen evolution reaction application
    Kamakshi, Pamula
    Chandrappan, Joshitha
    Chella, Santhosh
    Krishnamoorthy, Ganesh Kumar
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2024, 99
  • [48] Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4
    Leng, Xue
    Zeng, Qingcong
    Wu, Kuang-Hsu
    Gentle, Ian R.
    Wang, Da-Wei
    RSC ADVANCES, 2015, 5 (35): : 27823 - 27828
  • [49] Facile Synthesis and Characterization of MOF-Derived Porous Co3O4 Composite for Oxygen Evolution Reaction
    Gong, Yaqiong
    Xu, Zhoufeng
    Pan, Hailong
    CHEMISTRYSELECT, 2019, 4 (04): : 1131 - 1137
  • [50] Reaction mechanism for the oxygen evolution reaction (OER) on Co3O4{100}surface by first principle calculations
    Kerber, Torsten
    Sautet, Philippe
    Raybaud, Pascal
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247