An Automatic Visual Detecting Method for Semantic Object in Video

被引:0
|
作者
Li Zongmin
Li Deshan
Li Hua
Lin Zongkai
机构
关键词
automatic detection; semantic object; saliency map; pervasive computing;
D O I
10.1109/ICPCA.2008.4783578
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an approach to automatic detection of semantic object. The method provides an effective content expression pattern for semantic analysis and retrieval of video. In the moving semantic object detection model, motion contrast is computed based on the planar motion (homography) between frames, which is estimated by applying RANSAC algorithm on point correspondences in the scene. In the semantic object detection model of static frame, the three features used are intensity, color and texture. Then a dynamic fusion technique is applied to combine these models. The automatic detection method can greatly decrease computation and be used in pervasive computing environment conveniently. Experimental results verify efficiency of proposed approach.
引用
收藏
页码:210 / 215
页数:6
相关论文
共 50 条
  • [21] A novel video salient object extraction method based on visual attention
    Yi, Yang
    Ding, Jia
    Lai, Jieling
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (01) : 45 - 54
  • [22] An automatic video object segmentation scheme
    Zhang Xiaoyan
    Liu Lingxia
    Zhuang Xuchun
    2007 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, VOLS 1 AND 2, 2007, : 204 - 207
  • [23] SUBMODULAR VIDEO OBJECT PROPOSAL SELECTION FOR SEMANTIC OBJECT SEGMENTATION
    Wang, Tinghuai
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4522 - 4526
  • [24] Detecting Audio Events for Semantic Video Search
    Bugalho, M.
    Portelo, J.
    Trancoso, I.
    Pellegrini, T.
    Abad, A.
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 1147 - 1150
  • [25] Detecting automobiles and people for semantic video retrieval
    Visser, R
    Sebe, N
    Lew, MS
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 733 - 736
  • [26] Video Summarization with Visual and Semantic Features
    Dong, Pei
    Wang, Zhiyong
    Zhuo, Li
    Feng, Dagan
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 203 - +
  • [27] Video Captioning with Visual and Semantic Features
    Lee, Sujin
    Kim, Incheol
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (06): : 1318 - 1330
  • [28] Video summarisation with visual and semantic cues
    Xu, Binwei
    Liang, Haoran
    Liang, Ronghua
    IET IMAGE PROCESSING, 2020, 14 (13) : 3134 - 3142
  • [29] Object retrieval method based on randomized visual dictionaries and contextual semantic information
    Zhao, Yong-Wei
    Guo, Zhi-Gang
    Li, Bi-Cheng
    Gao, Hao-Lin
    Chen, Gang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2012, 40 (12): : 2472 - 2480
  • [30] An Efficient Method for Automatic Video Annotation and Retrieval in Visual Sensor Networks
    Feng, Jiangfan
    Zhou, Wenwen
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2014,