On the preservation of invariants by explicit Runge-Kutta methods

被引:46
|
作者
Calvo, M.
Hernandez-Abreu, D. [1 ]
Montijano, J. I.
Randez, L.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 28卷 / 03期
关键词
initial value problems; explicit Runge-Kutta methods; numerical geometric integration; preservation of invariants; variable step-size codes;
D O I
10.1137/04061979X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new strategy to preserve invariants in the numerical integration of initial value problems with explicit Runge-Kutta methods is presented. It is proved that this technique retains the order of the original method, has an easy and cheap implementation, and can be used in adaptive Runge-Kutta codes. Some numerical experiments with the classical code of Dormand and Prince, DoPri5(4), based on a pair of embedded methods with orders 5 and 4, are presented to show the behavior of the new method for several problems which possess invariants.
引用
收藏
页码:868 / 885
页数:18
相关论文
共 50 条
  • [31] STABILITY OF SEMI-EXPLICIT RUNGE-KUTTA METHODS
    SCHERER, R
    ARCHIV DER MATHEMATIK, 1975, 26 (03) : 267 - 272
  • [32] Exponentially-fitted explicit Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 7 - 15
  • [33] Explicit two-step Runge-Kutta methods
    Skvortsov L.M.
    Mathematical Models and Computer Simulations, 2010, 2 (2) : 222 - 231
  • [34] INTERNAL ERROR PROPAGATION IN EXPLICIT RUNGE-KUTTA METHODS
    Ketcheson, David I.
    Loczi, Lajos
    Parsani, Matteo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2227 - 2249
  • [35] NOTE ON EXPLICIT PARALLEL MULTISTEP RUNGE-KUTTA METHODS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    VANMOURIK, PA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (03) : 411 - 420
  • [36] On explicit two-derivative Runge-Kutta methods
    Chan, Robert P. K.
    Tsai, Angela Y. J.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 171 - 194
  • [37] BLOCK EMBEDDED EXPLICIT RUNGE-KUTTA METHODS.
    Cash, J.R.
    Computers & mathematics with applications, 1985, 11 (04): : 395 - 409
  • [38] Structure preservation of exponentially fitted Runge-Kutta methods
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 421 - 434
  • [39] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [40] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &