Applications of the ion beam technique for investigations of hypervelocity impacts

被引:10
|
作者
Kanel, GI
Asay, JR
Baumung, K
Bluhm, H
Chhabildas, LC
Fortov, VE
Goel, B
Hoppé, P
Mehlhorn, T
Razorenov, SV
Rusch, D
Utkin, AV
机构
[1] High Energy Dens Res Ctr, Moscow 127412, Russia
[2] Sandia Natl Labs, Target & Pinch Theory Dept Z, Albuquerque, NM 87185 USA
[3] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
[4] Inst Chem Phys Res, Chernogolovka 142432, Russia
关键词
D O I
10.1016/S0734-743X(99)00092-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the presentation we report on experiments at the Karlsruhe Light Ion Facility KALIF employing high-resolution laser-Doppler velocimetry. The schemes of possible EOS experiments using interferometry and the dynamics and the limiting factors of the ablative hypervelocity launching are discussed as well as advantages of the ion beam technique for investigations in the field of hypervelocity impacts and equations of state. So far, we have accelerated aluminum foils of 10 to 30 mu m thickness to velocities beyond 12 km/s. Besides the beam power, the limiting factors for the launching are melting of the accelerated flyer plate as a result of shock-wave heating and the heat transfer from the energy deposition zone. The experiments considered include the Hugoniot measurements and measurements at unloading of shock-compressed state down to the vaporization region. Parameters of shock waves that cause melting of aluminum, copper, molybdenum and titanium in release have been measured with a pulse proton beam on KALIF. A way of measurements in the vaporization region has been tested with explosive facilities. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:421 / 430
页数:10
相关论文
共 50 条
  • [11] Microstructure investigations of dental composite samples prepared by focused ion beam technique
    Andrzejczuk, M.
    Siejka-Kulczyk, J.
    Lewandowska, M.
    Kurzydlowski, K. J.
    JOURNAL OF MICROSCOPY-OXFORD, 2010, 237 (03): : 427 - 430
  • [12] Hypervelocity impacts and protection
    Thoma, K
    Riedel, W
    Schäfer, F
    Hiermaier, S
    PROCEEDINGS OF THE THIRD EUROPEAN CONFERENCE ON SPACE DEBRIS, VOLS 1 AND 2, 2001, 473 : 555 - 567
  • [13] Hypervelocity impacts into graphite
    Latunde-Dada, S.
    Cheesman, C.
    Day, D.
    Harrison, W.
    Price, S.
    CONDENSED MATTER AND MATERIALS PHYSICS CONFERENCE (CMMP10), 2011, 286
  • [14] Simulations Of Hypervelocity Impacts Into Graphite
    Hebert, D.
    Seisson, G.
    Bertron, I.
    Hallo, L.
    Chevalier, J-M.
    Thessieux, C.
    Guillet, F.
    Boustie, M.
    Berthe, L.
    PROCEEDINGS OF THE 2015 HYPERVELOCITY IMPACT SYMPOSIUM (HVIS 2015), 2015, 103 : 159 - 164
  • [15] Survival of seeds in hypervelocity impacts
    Jerling, Aaron
    Burchell, Mark J.
    Tepfer, David
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2008, 7 (3-4) : 217 - 222
  • [16] PRACTICAL APPLICATIONS OF ION BEAM MIXING: A NEW SURFACE TREATMENT TECHNIQUE.
    Deutchman, Arnold H.
    Partyka, Robert J.
    Solar Cells, 1988, 55 (02): : 30 - 31
  • [17] Oblique hypervelocity impacts into graphite
    Latunde-Dada, S.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2011, 38 (10) : 779 - 785
  • [18] Emission spectroscopy of hypervelocity impacts
    Ramjaun, DH
    Shinohara, M
    Kato, I
    Takayama, K
    IMPACT ENGINEERING AND APPLICATION, VOLS I AND II, 2001, : 139 - 144
  • [19] Hazards of hypervelocity impacts on spacecraft
    Lai, ST
    Murad, E
    McNeil, WJ
    JOURNAL OF SPACECRAFT AND ROCKETS, 2002, 39 (01) : 106 - 114
  • [20] Hypervelocity impacts and damage laws
    Lambert, M
    SPACE DEBRIS, 1997, 19 (02): : 369 - 378