Thermoelectric Properties and Nanostructuring in the p-Type Materials NaPb18-xSnxMTe20 (M = Sb, Bi)

被引:46
|
作者
Gueguen, Aurlie [1 ,3 ]
Poudeu, Pierre F. P. [1 ]
Li, Chang-Peng [4 ]
Moses, Steven [4 ]
Uher, Ctirad [4 ]
He, Jiaqing [2 ]
Dravid, Vinayak [2 ]
Paraskevopoulos, Konstantinos A. [5 ]
Kanatzidis, Mercouri G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci, NUANCE Ctr, Evanston, IL 60208 USA
[3] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[5] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
关键词
THERMAL-CONDUCTIVITY; STRUCTURAL-CHARACTERIZATION; HIGH-TEMPERATURE; SOLID-SOLUTIONS; MERIT; FIGURE; PBTE; SEMICONDUCTORS; AGPBMSBTE2+M; PERFORMANCE;
D O I
10.1021/cm803519p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermoelectric properties of materials with nominal compositions NaPb18-xSnxMTe20 (M = Sb, Bi) were investigated in the temperature range 300-650 K. All the members of NaPb18-xSnxMTe20 have a cubic rock-salt (NaCl) type structure and exhibit p-type charge transport behavior between 300-650 K. The relative fraction of Sn strongly affects the physical, structural, and transport properties of the materials. Independent of the nature of the pnicogen atom (M), the electrical conductivity increases with decreasing Pb:Sn ratio, whereas the thermopower decreases. Hall effect data for selected samples, e.g., NaPb15Sn3BiTe20 and NaPb13Sn5SbTe20, show high carrier concentrations of similar to 1 x 10(20) cm(-3) at room temperature. Comparing corresponding members from the antimony and bismuth series, we observed that the Sn-free compositions (x = 0) exhibit the highest power factors, and as a consequence, the highest ZT, with NaPb18BiTe20 reaching a ZT approximate to 1.3 at 670 K. The NaPb18-xSnxMTe20 series exhibit increasing total thermal conductivity with increasing fraction of Sn with room temperature values between 1.37 W/(m K) for x = 3 and 3.9 W/(m K) for x = 16 for NaPb18-xSnxSbTe20. The lowest lattice thermal conductivity, similar to 0.4 W/(m K), was observed for the composition NaPb2Sn16BiTe20 at 650 K. High-resolution transmission electron microscopy on several members of the NaPb18-xSnxMTe20 series reveal that they are inhomogeneous on the nanoscale with widely dispersed nanocrystals embedded in a Pb1-ySnyTe matrix. Also observed are lamellar features in these materials associated with compositional fluctuations and significant strain at the nanocrystal/matrix interface.
引用
收藏
页码:1683 / 1694
页数:12
相关论文
共 50 条
  • [21] Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3
    Son, J. H.
    Oh, M. W.
    Kim, B. S.
    Park, S. D.
    Min, B. K.
    Kim, M. H.
    Lee, H. W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 566 : 168 - 174
  • [22] Enhanced Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3-Cu8GeSe6 Composite Materials
    Tong, Yifeng
    Huang, Wenjie
    Tan, Xiaojian
    Yi, Longbing
    Zhuang, Shuai
    Wu, Jiehua
    Song, Kun
    Liu, Guoqiang
    Zhang, Genlin
    Jiang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (50) : 55780 - 55786
  • [23] Thermoelectric properties of p-type Bi-Sb-Te thin films with various compositions using a combinatorial method
    Hee-Jung Lee
    Seungmin Hyun
    Hyun-Seong Park
    Seungwoo Han
    Electronic Materials Letters, 2011, 7 : 45 - 49
  • [24] Microstructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 fabricated by hot pressing
    Lee, DM
    Seo, JH
    Park, K
    Shiota, I
    Lee, CH
    FUNCTIONALLY GRADED MATERIALS 1996, 1997, : 539 - 543
  • [25] Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering
    Jiang, J
    Chen, LD
    Bai, SQ
    Yao, Q
    Wang, Q
    SCRIPTA MATERIALIA, 2005, 52 (05) : 347 - 351
  • [26] Thermoelectric properties of p-type (Bi,Sb)2Te3 alloys fabricated by the hot pressing method
    Kim, HJ
    Kim, HC
    Hyun, DB
    Oh, TS
    METALS AND MATERIALS INTERNATIONAL, 1998, 4 (01) : 75 - 81
  • [27] Microstructural and thermoelectric properties of hot-extruded p-type Bi0.5Sb1.5Te3
    Seo, JH
    Lee, DM
    Park, K
    Kim, JH
    Nishida, IA
    Lee, CH
    FUNCTIONALLY GRADED MATERIALS 1996, 1997, : 545 - 549
  • [28] Rare earth ytterbium enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3
    Qin, Haixu
    Xie, Liangjun
    Zhang, Zongwei
    Qin, Dandan
    Guo, Fengkai
    Cai, Wei
    Zhang, Qian
    Sui, Jiehe
    APPLIED PHYSICS LETTERS, 2019, 114 (12)
  • [29] Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes
    Yeo, Y. H.
    Oh, T. S.
    MATERIALS RESEARCH BULLETIN, 2014, 58 : 54 - 58
  • [30] Fabrication and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds by ingot extrusion
    Seo, J
    Cho, D
    Park, K
    Lee, C
    MATERIALS RESEARCH BULLETIN, 2000, 35 (13) : 2157 - 2163