Thermal stabilizers, lubricant, and plasticizers are three crucial additives for processing poly(vinyl chloride) (PVC). In this study, a new mannitol stearate ester-based aluminum alkoxide (MSE-Al) was designed and synthesized as a novel additive for PVC. The thermal stability and processing performance of PVC stabilized by MSE-Al were evaluated by the Congo red test, conductivity measurement, thermal aging test, ultravioletevisible (UV-Vis) spectroscopy test, and torque rheometer test. Results showed that the addition of MSE-Al could not only markedly improve the long-term thermal stability of PVC, but also greatly accelerate the plasticizing and decrease the balance torque, which demonstrated that MSE-Al possessed a lubricating property. Thus, MSE-Al was demonstrated to be able to provide tri-functional additive roles, e.g., thermal stabilizer, plasticizer, and lubricant. The test results for the thermal stability of PVC indicated that the initial whiteness of PVC stabilized by MSE-Al was not good enough, thus the synergistic effect of MSE-Al with zinc stearates (ZnSt(2)) on the thermal stability of PVC was also investigated. The results showed that there is an appreciable synergistic effect between MSE-Al and ZnSt(2). The thermal stabilization mechanism and synergism effect of MSE-Al with ZnSt(2) are then discussed.