CTAB enhancement of FRET in DNA structures

被引:7
|
作者
Oh, Taeseok [1 ]
Takahashi, Tsukasa [2 ]
Kim, Sejung [1 ]
Heller, Michael J. [3 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
关键词
FRET; DNA; CTAB; TAMRA; TexasRed; PHOTOINDUCED ELECTRON-TRANSFER; RESONANCE ENERGY-TRANSFER; FLUORESCENT DYES; FLUOROPHORES; DYNAMICS;
D O I
10.1002/jbio.201500221
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The effect of cetyl-trimethylammonium bromide (CTAB) on enhancing the fluorescence resonance energy transfer (FRET) between two dye-conjugated DNA strands was studied using fluorescence emission spectroscopy and dynamic light scattering (DLS). For hybridized DNA where one strand is conjugated with a TAMRA donor and the other with a TexasRed acceptor, increasing the concentration of CTAB changes the fluorescence emission properties and improves the FRET transfer efficiency through changes in the polarity of the solvent, neutralization of the DNA backbone and micelle formation. For the DNA FRET system without CTAB, the DNA hybridization leads to contact quenching between TAMRA donor and TexasRed acceptor producing reduced donor emission and only a small increase in acceptor emission. At 50 mu M CTAB, however, the sheathing and neutralization of the dye-conjugated dsDNA structure significantly reduces quenching by DNA bases and dye interactions, producing a large increase in FRET efficiency, which is almost four fold higher than without CTAB.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [31] FRET and Sm-FRET Characterization of a Lac Repressor-Dna Looping Landscape
    Kahn, Jason D.
    Haeusler, Aaron R.
    Goodson, Kathy A.
    English, Douglas S.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 70 - 71
  • [32] Fractional precipitation of plasmid DNA from lysate by CTAB
    Lander, RJ
    Winters, MA
    Meacle, FJ
    Buckland, BC
    Lee, AL
    BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (07) : 776 - 784
  • [33] Atomic Force Microscopy of DNA-CTAB Aggregates
    Rimawi, Adam
    St John, Pamela M.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 388A - 388A
  • [34] 采用CTAB法快速提取植物DNA
    廖俊杰
    天津农业科学, 1993, (03) : 26 - 26
  • [35] 改进的CTAB法提取黄瓜DNA
    王宏建
    吴越
    谷维
    孙晓丹
    秦智伟
    黑龙江农业科学, 2006, (05) : 124 - 125
  • [36] 改良CTAB法提取石斛总DNA
    肖鲲
    葛晓军
    李小琼
    唐彦萍
    贵阳医学院学报, 2007, (02) : 213 - 214
  • [37] 改良CTAB法快速提取棉花DNA
    宋国立
    崔荣霞
    王坤波
    郭立平
    黎绍惠
    王春英
    张香娣
    棉花学报, 1998, (05) : 50 - 52
  • [38] Deep-learning-assisted single-molecule FRET analyses established using DNA origami structures
    Asadiatouei, Pooyeh
    Wanninger, Simon
    Bohlen, Johann
    Salem, Clemens-Baessem
    Tinnefeld, Philip
    Ploetz, Evelyn
    Lamb, Don C.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 285A - 285A
  • [39] G-quadruplex structures of human telomere DNA examined by single molecule FRET and BrG-substitution
    Okamoto, Kenji
    Sannohe, Yuta
    Mashimo, Tomoko
    Sugiyama, Hiroshi
    Terazima, Masahide
    BIOORGANIC & MEDICINAL CHEMISTRY, 2008, 16 (14) : 6873 - 6879
  • [40] Gold Nanoparticle Based FRET for DNA Detection
    Paresh Chandra Ray
    Gopala Krishna Darbha
    Anandhi Ray
    Joshua Walker
    William Hardy
    Plasmonics, 2007, 2 : 173 - 183