On the spectrum of Farey and Gauss maps

被引:32
|
作者
Isola, S
机构
[1] Univ Camerino, Dipartimento Matemat & Fis, I-62032 Camerino, Italy
[2] INFM, I-62032 Camerino, Italy
关键词
D O I
10.1088/0951-7715/15/5/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce Hilbert spaces,of holomorphic functions, given by generalized Borel and Laplace transforms which are left invariant by the transfer operators of the Farey map, and its induced transformation, the Gauss map, respectively. By means of a suitable operator-valued power series we are able to study simultaneously the spectrum of both these operators along with the analytic properties of associated dynamical zeta-functions. This construction establishes an explicit connection between previously unrelated results of Mayer and Rugh.
引用
收藏
页码:1521 / 1539
页数:19
相关论文
共 50 条
  • [41] CR submanifolds in a sphere and their Gauss maps
    CHENG XiaoLiang
    JI ShanYu
    LIU WeiMing
    Science China(Mathematics), 2013, 56 (05) : 1042 - 1050
  • [42] Invariants of gauss maps of theta divisors
    Adams, Malcolm
    McCrory, Clint
    Shifrin, Ted
    Varley, Robert
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [43] Semicontinuity of Gauss maps and the Schottky problem
    Giulio Codogni
    Thomas Krämer
    Mathematische Annalen, 2022, 382 : 607 - 630
  • [44] THE GAUSS MAP AND NONHOLOMORPHIC HARMONIC MAPS
    ISHIHARA, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 89 (04) : 661 - 665
  • [45] On the structure of submanifolds with degenerate Gauss maps
    Akivis, MA
    Goldberg, VV
    GEOMETRIAE DEDICATA, 2001, 86 (1-3) : 205 - 226
  • [46] Gauss maps of the mean curvature flow
    Wang, MT
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (2-3) : 287 - 299
  • [47] CR submanifolds in a sphere and their Gauss maps
    XiaoLiang Cheng
    ShanYu Ji
    WeiMing Liu
    Science China Mathematics, 2013, 56 : 1041 - 1049
  • [48] An embedding of the Farey web in the parameter space of simple families of circle maps
    Brucks, K
    Ringland, J
    Tresser, C
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 161 (3-4) : 142 - 162
  • [49] Gauss maps and duality of sphere bundles
    Dreibelbis, D.
    REAL AND COMPLEX SINGULARITIES, 2016, 675 : 77 - 88
  • [50] USING GAUSS MAPS TO DETECT INTERSECTIONS
    Xavier, Frederico
    ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (1-2): : 15 - 31