Entropy Production by Explicit Runge-Kutta Schemes

被引:14
|
作者
Lozano, Carlos [1 ]
机构
[1] INTA, Fluid Dynam Grp, Carretera Ajalvir,Km4, Torrejon De Ardoz 28850, Madrid, Spain
关键词
Runge-Kutta methods; Entropy production; Finite-volume methods; HIGH-ORDER ACCURATE; CONSERVATION-LAWS; FULLY DISCRETE; DIFFERENCE APPROXIMATIONS; NUMERICAL VISCOSITY; STABLE SCHEMES; SYSTEMS; EQUATIONS; ENERGY; STABILITY;
D O I
10.1007/s10915-017-0627-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and test a formula for the separate computation of the temporal and spatial entropy production of fully discrete, finite-volume, explicit Runge-Kutta discretizations of systems of conservation laws.
引用
收藏
页码:521 / 564
页数:44
相关论文
共 50 条
  • [41] LOW-STORAGE RUNGE-KUTTA SCHEMES
    WILLIAMSON, JH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (01) : 48 - 56
  • [42] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA SCHEMES
    SANZSERNA, JM
    ABIA, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1081 - 1096
  • [43] ROBUST DEFECT CONTROL WITH RUNGE-KUTTA SCHEMES
    HIGHAM, DJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) : 1175 - 1183
  • [44] Multirate Runge-Kutta schemes for advection equations
    Schlegel, Martin
    Knoth, Oswald
    Arnold, Martin
    Wolke, Ralf
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (02) : 345 - 357
  • [45] Central Runge-Kutta schemes for conservation laws
    Pareschi, L
    Puppo, G
    Russo, G
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 979 - 999
  • [46] RUNGE-KUTTA SCHEMES FOR HAMILTONIAN-SYSTEMS
    SANZSERNA, JM
    BIT, 1988, 28 (04): : 877 - 883
  • [47] Total variation diminishing Runge-Kutta schemes
    Gottlieb, S
    Shu, CW
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 73 - 85
  • [48] The positivity of low-order explicit Runge-Kutta schemes applied in splitting methods
    Gerisch, A
    Weiner, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 53 - 67
  • [49] Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties
    Capuano, F.
    Coppola, G.
    Randez, L.
    de Luca, L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 86 - 94
  • [50] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION AND APPLICATIONS
    Boscarino, Sebastiano
    Russo, Giovanni
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 61 - 80