Blind Image Quality Assessment Using Latent Dirichlet Allocation Model

被引:1
|
作者
Luo, Wang [1 ]
Zhang, Tianbing [1 ]
机构
[1] State Grid Elect Power Res Inst, Nanjing 211106, Jiangsu, Peoples R China
关键词
Image Quality; Latent Dirichlet Allocation; Distortions; Quality Assessment; No-reference;
D O I
10.4028/www.scientific.net/AMM.483.594
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we propose a blind image quality assessment (IQA) method under latent Dirichlet allocation (LDA) model. To assess the image quality, firstly, we learn topic-specific word distribution by training a set of pristine and distorted images without human subjective scores. Secondly, LDA model is used to estimate probability distribution of topic for the regions in the test images. Finally, we calculate the perceptual quality score of the test image by comparing the estimated probabilities of topics of the test image with that for the pristine images. Note that the quality-aware visual words are used to represent the images, which generated with respect to the natural scene statistic features. Experimental evaluation on the publicly available subjective-rated database LIVE demonstrates that our proposed method correlates reasonably well with different mean opinion scores (DMOS).
引用
收藏
页码:594 / 598
页数:5
相关论文
共 50 条
  • [41] An analytical code quality methodology using Latent Dirichlet Allocation and Convolutional Neural Networks
    Sorour, Shaymaa E.
    Abdelkader, Hanan E.
    Sallam, Karam M.
    Chakrabortty, Ripon K.
    Ryan, Michael J.
    Abohany, Amr
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 5979 - 5997
  • [42] Content Quality of Clustered Latent Dirichlet Allocation Short Summaries
    Annamalai, Muthukkaruppan
    Mukhlis, Siti Farah Nasehah
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 494 - 504
  • [43] A PERCEPTUAL HASHING ALGORITHM USING LATENT DIRICHLET ALLOCATION
    Vretos, Nicholas
    Nikolaidis, Nikos
    Pitas, Ioannis
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 362 - 365
  • [44] Using Latent Dirichlet Allocation for Automatic Categorization of Software
    Tian, Kai
    Revelle, Meghan
    Poshyvanyk, Denys
    2009 6TH IEEE INTERNATIONAL WORKING CONFERENCE ON MINING SOFTWARE REPOSITORIES, 2009, : 163 - 166
  • [45] Topic Modeling Using Latent Dirichlet allocation: A Survey
    Chauhan, Uttam
    Shah, Apurva
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [46] A Review of Cyberattack Research using Latent Dirichlet Allocation
    Xiao, Ming
    Dhillon, Gurpreet
    Smith, Kane J.
    28th Americas Conference on Information Systems, AMCIS 2022, 2022,
  • [47] Unsupervised Language Filtering using the Latent Dirichlet Allocation
    Zhang, Wei
    Clark, Robert A. J.
    Wang, Yongyuan
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 1268 - 1272
  • [48] Predicting Component Failures Using Latent Dirichlet Allocation
    Liu, Hailin
    Xu, Ling
    Yang, Mengning
    Yan, Meng
    Zhang, Xiaohong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [49] Land cover harmonization using Latent Dirichlet Allocation
    Li, Zhan
    White, Joanne C.
    Wulder, Michael A.
    Hermosilla, Txomin
    Davidson, Andrew M.
    Comber, Alexis J.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (02) : 348 - 374
  • [50] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497