An inexact Newton method for nonconvex equality constrained optimization

被引:33
|
作者
Byrd, Richard H. [2 ]
Curtis, Frank E. [1 ]
Nocedal, Jorge [3 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Large-scale optimization; Constrained optimization; Nonconvex programming; Inexact linear system solvers; Krylov subspace methods; CONVERGENCE; 2ND-ORDER; ALGORITHM; POINT;
D O I
10.1007/s10107-008-0248-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a matrix-free line search algorithm for large-scale equality constrained optimization that allows for inexact step computations. For strictly convex problems, the method reduces to the inexact sequential quadratic programming approach proposed by Byrd et al. [SIAM J. Optim. 19(1) 351-369, 2008]. For nonconvex problems, the methodology developed in this paper allows for the presence of negative curvature without requiring information about the inertia of the primal-dual iteration matrix. Negative curvature may arise from second-order information of the problem functions, but in fact exact second derivatives are not required in the approach. The complete algorithm is characterized by its emphasis on sufficient reductions in a model of an exact penalty function. We analyze the global behavior of the algorithm and present numerical results on a collection of test problems.
引用
收藏
页码:273 / 299
页数:27
相关论文
共 50 条
  • [1] An inexact Newton method for nonconvex equality constrained optimization
    Richard H. Byrd
    Frank E. Curtis
    Jorge Nocedal
    Mathematical Programming, 2010, 122
  • [2] A filter line search algorithm based on an inexact Newton method for nonconvex equality constrained optimization
    Zhu-jun Wang
    De-tong Zhu
    Cun-yun Nie
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 687 - 698
  • [3] A Filter Line Search Algorithm Based on an Inexact Newton Method for Nonconvex Equality Constrained Optimization
    Zhu-jun WANG
    De-tong ZHU
    Cun-yun NIE
    Acta Mathematicae Applicatae Sinica, 2017, 33 (03) : 687 - 698
  • [4] A filter line search algorithm based on an inexact Newton method for nonconvex equality constrained optimization
    Wang, Zhu-jun
    Zhu, De-tong
    Nie, Cun-yun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (03): : 687 - 698
  • [5] An inexact SQP method for equality constrained optimization
    Byrd, Richard H.
    Curtis, Frank E.
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 351 - 369
  • [6] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Liu, Ruyu
    Pan, Shaohua
    Wu, Yuqia
    Yang, Xiaoqi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) : 603 - 641
  • [7] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Ruyu Liu
    Shaohua Pan
    Yuqia Wu
    Xiaoqi Yang
    Computational Optimization and Applications, 2024, 88 : 603 - 641
  • [8] Equality-Constrained Engineering Design Optimization Using a Novel Inexact Quasi-Newton Method
    Wang, Bingran
    Jo Joshy, Anugrah
    Hwang, John T.
    AIAA JOURNAL, 2022, 60 (11) : 6157 - 6167
  • [9] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Lv, Jian
    Pang, Li-Ping
    Meng, Fan-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 517 - 549
  • [10] Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization
    Li, Zichong
    Chen, Pin-Yu
    Liu, Sijia
    Lu, Songtao
    Xu, Yangyang
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (01) : 117 - 147