A network flow approach to the minimum common integer partition problem

被引:4
|
作者
Zhao, Wenbo
Zhang, Peng
Jiang, Tao
机构
[1] Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China
[2] Graad Univ, Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
基金
美国国家卫生研究院; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Minimum Common Integer Partition; approximation algorithm; network flow;
D O I
10.1016/j.tcs.2006.09.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the k-Minimum Common Integer Partition Problem, abbreviated as k-MCIP, we are given k multisets X-1,..., X-k of positive integers, the goal is to find an integer multiset T of the minimum size such that for every i, we can partition each of the integers in Xi so that the disjoint (multiset) union of their partitions equals T. This problem has applications in computational molecular biology, in particular, ortholog assignment and DNA hybridization fingerprint assembly. The problem is known to be NP-hard for any k >= 2. In this article, we improve the approximation ratio for k-MCIP by viewing this problem as a flow decomposition problem in some flow network. We show an efficient 0.5625k-approximation algorithm, improving upon the previously best known 0.6139k-approximation algorithm for this problem. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:456 / 462
页数:7
相关论文
共 50 条
  • [41] Solving the convex cost integer dual network flow problem
    Ahuja, RK
    Hochbaum, DS
    Orlin, JB
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 31 - 44
  • [42] Solving the convex cost integer dual network flow problem
    Ahuja, RK
    Hochbaum, DS
    Orlin, JB
    [J]. MANAGEMENT SCIENCE, 2003, 49 (07) : 950 - 964
  • [43] ON A PARTITION PROBLEM WITH A MINIMUM NUMBER OF CLASSES
    TOMESCU, I
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 265 (21): : 645 - &
  • [44] The Minimum Cost Flow Problem of Uncertain Random Network
    Abdi, Soheila
    Baroughi, Fahimeh
    Alizadeh, Behrooz
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2018, 35 (03)
  • [45] Network flow methods for the minimum covariate imbalance problem
    Hochbaum, Dorit S.
    Rao, Xu
    Sauppe, Jason
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 300 (03) : 827 - 836
  • [46] The problem of maximum flow with minimum attainable cost in a network
    Ahmed, Nazimuddin
    Das, S.
    Purusotham, S.
    [J]. OPSEARCH, 2013, 50 (02) : 197 - 214
  • [47] An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing
    Pinto, Leizer L.
    Fernandes, Katia C. C.
    Cardoso, Kleber V.
    Maculan, Nelson
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2019, 106 : 28 - 35
  • [48] Solving the minimum convex partition of point sets with integer programming
    Sapucaia, Allan
    Rezende, Pedro J. de
    Souza, Cid C. de
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 99
  • [49] A Mixed Integer Programming Approach for Economical Network Design Problem
    Sun, Yuejiang
    Zhao, Qiuling
    Chen, Hongjie
    [J]. IAENG International Journal of Computer Science, 2020, 47 (01): : 87 - 91
  • [50] The air traffic flow management problem: An integer optimization approach
    Bertsimas, Dimitris
    Lulli, Guglielmo
    Odoni, Amedeo
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 34 - +